CHAPTER 5

Logistic regression

Logistic regression is the standard way to model binary outcomes (that is, data
y; that take on the values 0 or 1). Section 5.1 introduces logistic regression in a
simple example with one predictor, then for most of the rest of the chapter we work
through an extended example with multiple predictors and interactions.

N

5.1 Logistic regression with a single predictor
Erample: modeling political preference given income

Conservative parties generally receive more support among voters with higher in-
comes. We illustrate classical logistic regression with a simple analysis of this pat-
tern from the National Election Study in 1992. For each respondent ¢ in this poll,
¢ label y; =1 if he or she preferred George Bush (the Republican candidate for
esident) or 0 if he or she preferred Bill Clinton (the Democratic candidate), for
ow excluding respondents who preferred Ross Perot or other candidates, or had
pinion. We: predict preferences given the respondent’s income level, which is
acterized on a five-point scale.!

e data are shown as (jittered) dots in Figure 5.1, along with the fitted logistic
on line, a curve that is constrained to lie between 0 and 1. We interpret the
the probability that y = 1 given z—in mathematical notation, Pr(y = 1|z).
t and display the logistic regression using the following R function calls:

< gln (vote ~ income, family=binomial(link="logit"))
(fit.1)

coef.est coef.se
-1.40 0.19

, 0.33 0.06
k=2

“~deviance = 16566.9, null deviance = 1591.2 (difference = 34.3)

el is P_T(?Jz’ = 1) = logit™*(—1.40 4 0.33 - income). We shall define
ematically and then return to discuss its interpretation.

ense to fit the continuous linear regression model, X G + error,
on the values 0 and 1. Instead, we model the probability that

Py =1) = logit™(X,), (5.1)
that the outcomes y; are independent given these probabili-

! he linear predictor.

on the i : . . .
: hcome categories and other variables measured in this survey.

R output
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The inverse-logistic function is curved, and so the expected difference in y corre-
sponding to a fixed difference in « is not a constant. As can be seen in Figure 5.2,
the steepest change occurs at the middle of t

he curve. For example:
o logit(0.5) = 0, and logit(0.6) = 0.4. Here, adding 0.4 on the logit scale corre-
sponds to a change from 50% to 60% on the probability scale.
o logit(0.9) = 2.2, and !

ogit(0.93) = 2.6. Here, adding 0.4 on the logit scale corre-
sponds to a change from 90% to 93% on the probability scale.

Gimilarly, adding 0.4 at the low end of the scale moves a probability from 7% to
10%. In general, any particular change on the logit scale is compressed at the ends
of the probability scale, which is neede

d to keep probabilities bounded between 0
and 1.

5.2 Interpreting t

he logistic regression coefficients
Coefficients in lo

gistic regression can be challenging to int
nonlinearity just noted. We s

erpret because of the
hall try to generalize the procedure for understanding
cocfficients one at a time, as was done for linear regression in Chapter 3. We illus-
rate with the model, Pr(Bush support)

= logit™'(~1.40 + 0.33 - income). Figure
1 shows the story, but we would also like numerical summaries. We present some

simple approaches here and return in Section 5.7 to more compre

hensive numerical
miaries.

wation at and near the mean of the data

curve of the logistic function requires us to choose where to evaluate changes,
Wanf; to interpret on the probability scale. The mean of the input variables in
data is often a useful starting point.
h linear regression, the in
or the other predictors.

tercept can only be interpreted assuming zero val-
When zero is not interes

ting or not even in the model

: the voting example, where income is on a 1-5 scale), the intercept must be

ted at some other point. For example, we can evaluate Pr(Bush support)
_central income category and get logit ™' (—1.40 4 0.33 3) = 0.40.

can evaluate Pr(Bush support) at the mean of respondents’ incomes:
—140+0.33-Z); in R we code this as®

’;his directly in terms of probabilities.

f«la,te how the probability differs with a unit difference in z near

&1; Since 7 = 3.1 in this example, we can evaluate the logistic
. ton atz = ii imd z = 2; the difference in Pr(y = 1) correspond-
10 2 is logit™" (~1.40+0.33-3) —logit ™ (~1.40+0.33-2) = 0.08.

ion W £ . .
\ ¢ have written, invlogit <- function (x) {1/(1+exp(—x))}.



82

A difference of 1in in
8% in the probability ©

_ Rather than
the logistic curve ab the
function logit’1 a+ Bz

{inear Pt
pe of fhe curve
int s

cen

—0.
of «change” B

— For this example,
of 0.13 (to one decimal place); §

difference i8 larg
answers. They will always be the

the difference

The “divide by 4 rule”

The logistic curve is steepe

1og'1t”1(oz+ Bz) = 0.5 (see Fi 5.2).
logistic function—i8 i i
g/4. Thus, g4 is the maximum
difference in T-

As arule of ¢

difference €O
approximation
o 0.5.

For example, 1
we can divide 0.3
to no more than an 8% pos
Because the data in thi
«divide by A" approxim

af the central point of the data.

3/4 to get 0.08:a

Interpretation of coefficients @

Another way to interpret log

1f two outcomes have the pro

An odds of 1is equ'walent to a
Odds of 0.5 0F 9.0 represent PT
thus, (@1/(1 p1))/ 2/ =

2 corresponds to
p= 0.67.

An advantage of worki:
is possible
poundary points of 0
4 increases the probab
probab'ﬂ'lty to

Exponentia‘c

For simplicity, W€ illustrate

come categor
£ supporting Bush.

consider & discrete chang®
tral value, in this case T
atBe /(1 + e P2, The

edictor at the centr al value

his 18
e, the differencing

gt ab 1t center,

n the model PT (Bush supP

irive differenc in the prob

istic regressio
babilities (D» 1—p), then P [A—P
probab'ﬂity of 0.5—that
obabilities of

)—is called an

a change from p =

to keep scaling up odds T

LOGISTIC REGRESSION

v corresponds to a positive difference of

in x, we canl compute the derivative of
= 3.1 Diﬁerentiating the

) with respect 10 T yields pé
7 =311 f1.40+0.33-3.1 =

—the «change’ 1D Priy= 1) per small unit

309 /(1 + —0:39)2 = 0.13.
on the probabﬂity scale is the same value
:oal but in some cases where & unit

and the erivative can give slightly different

game si

at which point o + pe = 080 that
The slope of the curve—the derivative of the
g point and attains the value Bl (1 +e€ 2=
Pr{y = 1) corresponding to a unit

1 coefficients (other than
pound of the predict'we
pound is & reasonable

abilities are close

Jogistic regressio
4 to get an upper
in . This upper

ve,

ort) = logit'1 (—1.40 + 0.33 - income),
ategory corresponds
orting Bush

e 5.1), this

difference of 1 in income C

s case actually lie e

s odds ratios

n coefficients i

is, equally

1/3,2/3)- The ratio of tw
s, an oddi

033t0p = 0.

ng with odds ratios (instea

atios indefinitely without
from an odds of 2 {o an

ling the odds agait inc

 sidesof th :

s Ie>1§qlilfa/gmnb szpi)lnentiating both sides. the

‘ , if 8= 0.2, then a unit diff e o
erence in x corres

INTERPRETIN
G THE LOGISTIC REGRESSION COEFFICIEN
TS

A
Bt1se™

T
T
T

— 2 A
s.e. B +2se.

'gu € 5 3 DZS ; : ”i -
E I . ZbutZOTL repr b Tt Teqression Coefjic T
17 7Y esent’mg unce a/l/nty Zn an estimated
lent ( (4

pea g )‘
ted f’[()’ln D 4 g ; h'L dZ U pomny h D ? /3
a.ge 4) ; he range o this St'] 'Lb fon correspo dS to the OSS’Lble Ualues 4]

that are consistent wi
with the data ;
. When using this as an uncertainty distrib
istribution, we assi
ign

an approzimate 68% chan

’ ‘ ce that B will lie within andard error of the poin

g, and an approzimate 95% chance that 8 un;f l';e ijitz . the point cstt
ithin 2 st imats

reqression model is corr ;

g ect, it sh and

5 ’ e e ndard erro i

B, falls more than 2 standard errors awize;“oizlzhabom 0% of the time t;;té;summg the
e B e estimate,

Add g ( ? .
111! ‘ ((i i ‘ hai 18 C:ha::(l mng x t() +1 mn 5 haS th.e ef{ect Of addlng ﬁ tO bOLh

dds are then multiplied by e?

change of %2 = 1.22 i
; = 1.22 in the od pond .
or changing p from 0.5 to 0 5S)ds (for example, changing the cfc;((i)saf multiplicative
v rom 1 to 1.22
?

We find that th
e con
cept of odds can be somewhat difficult to und
understand, and

dds ratios ar

L e even more obs

¢ original scale of th cure. Therefore w .

1 ; ed ’ e prefe

he logit scale correspon d:zz when possible, for eXamplretCS’;%terpret coefficients on

\ a change in probability from 10211?_‘31%? t adding 0.2 on
to logit'l(o 2)

nee

ictent estim
ates and st
st . standard
k(‘m are estimated using maxi 67"7“07}9, The coefficients in classi
mum likelihood, a procedure thassmal logistic re-
at can oft
en work

models with fe
: w predictors fi
2 potential rs fit to reas
problem) onably large sam
. ples (but see Secti
ction

th the line
ar- model, th
ughly say tha , the standard erro
% coeffici ) rs represent estimati
e range of possib 3 shows the normal distributi rrors of 3 are con-
1 istribut .
as an estimate [ o’f nggles of B. For the voting ;f{;ll’flh?t approximately
nsistent with values f find a standard error of 0 ()6-p ¢, the coefliciont
9] ﬂ in the range [033 19.0 06]7 tl%gs the data are

gnificance.  As wi
nificant” if" s s with linear regressi
it is at | gression, a coefficient i .
coefficient of inco(::iSt-Q standard err(;rs aWanylgi is considered “sta-
f‘alr.ly certain that irist}sltatIStically significant andzem: l:n the voting
1Itn income generafly co e population represented byp:;ltlve’ meaning
v of supporti rrespond to positi 18 surve i-
. rzgroerm.ng Bush for presidoerll)f sitive (not negative) diﬁgl’*eprfcsés
- ssion, we :
1n§er<:ept. The,Signlﬁfually do not try to interpret th .
Yy meaningless to com - ln_tercept is not generally of . st_a tistical
: angly different fmmpare it to zero or worry ab?)’ut 31}11}’ 1§tereSt’
msidering mult; ZEro. whether it i
ultiple i S
, ple inputs, we follow the same principl
nciples as with

en decidin
: g when
in Section 4.6. and how to include and combine i
inputs in a




00 04 02 03 04 05

Coefficient of income

1050 1960 1970 1980 1990 2000
Year

Figure 5.4 Coefficient of income (on @ 1-5 scale) with £1 standard-error bounds in logistic
reqressions predicting Republican preference for president, as estimated sepamtely from
surveys in the second half of the wwentieth century. The pattern of richer voters supporting
Republicans has increased since 1970. The data used in the estimate for 1992 appear in
Figure 5.1.

Predictions. Logistic regression predictions are probabiﬁstic, so for each unob-
served future datae point ij;, there is a predict'we probabﬂity,

5, = Pr(#i = 1) = 1og'1t—1()~(¢ﬁ),

rather than @ point prediction- For example, for a voter not in the survey with
income level 5 (recall the B-point S 5.1), the predicted probability of
supporting Bush is Pr(¥ = 1) = logit™ 0.33:5) = 0.55. We do not say
that our prediction for the outcome is 0.55, since r—suppog‘g for Bush
or not—itself will be 0 or 1.

Fitting and displaying the model in R

After fitting the logistic regression using the glm function (see Page 79), we call
graph the data and fitted line (see Figure 5.1a) as follows:

plot (incone, vote)
curve (inviogit (coef (git. 0 * coef (£it.1) [21*x), add=TRUE)

The R code we actually use to make the figure has more steps sO a8 to displa:
axis labels, jitter the points, adjust line thickness, and 80 forth.) Figure 5.1b b
dotted lines representing uncertainty in the coefficients; We display these by addin
the following to the plotting commands:

4 <- sim (fit.l)
for (j in 1:100{
curve (invlogit (sim.1$beta[j,1] + sim.1$beta[j,2]*x),
col="gray", 1wyd=.5, ad =TRUE) }

We demonstrate further use of the sim function in Chapter 7

Displaying the results of several logistic regressions

We can display estimates from 2 geries of logistic regressions in a single
as was done in Section 4.7 for linear regression coefficients. Figure 5.4
with the estimate =1 standard error for the coefficient for income On
preference, fit to National Election Studies pre-election polls from 1
2000. Higher income has consistently been predictive of Republican
the connection has become gtronger over the years.
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LOGISTIC REGRESSION MODELING: WELLS IN BANGLADESH
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 Figure 5.7 Wells in an ared of Araihazar upazila, Bangladesh. Light and dark dots rep-

resent wells with arsenic greater than and less than the safety standard of 0.5 (in units
f hiundreds of micrograms per liter). (The wells are located where people live. The empty
recs between the wells are mostly cropland.) Safe and unsafe wells are intermingled in
mest of the area, which suggests that users of unsafe wells can switch to nearby safe wells.

kground

y of the wells used for drinking water in Bangladesh and other South Asian
tries are contaminated with natural arsenic, affecting an estimated 100 million
le. Arsenic is a cumulative poison, and exposure increases the risk of cancer

other diseases, with risks estimated to be proportional to exposure.
locality can include wells with a range of arsenic levels, as can be seen from
p in Figure 5.7 of all the wells in a collection of villages in a small area of
desh. The bad news is that even if your neighbor’s well is safe, it does not
at yours is safe. However, the corresponding good news is that, if your well
h arsenic level, you can probably find a safe well nearby to get your water
ou are willing to walk the distance and your neighbor is willing to share.
unt of water needed for drinking is low enough that adding users to a
not exhaust its capacity, and the surface water in this area is subject to

n by microbes, hence the desire to use water from deep wells.)
rea shown in Figure 5.7, a research team from the United States and
mt?asured all the wells and labeled them with their arsenic level as well
rization as “safe” (below 0.5 in units of hundreds of micrograms per
ladesh standard for arsenic in drinking water) or “unsafe” (above 0.5).
nsafe wells were encouraged to switch to nearby private or community
wells of their own construction.

ter, the researchers returned to find out who had switched wells.
& logistic regression analysis to understand the factors predictive
g among the users of unsafe wells. In the notation of the previous

1 'ff household i switched to a new well
0 if household i continued using its own well.
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the Araihaza? dataset (se€ Figure 5.7):

We consider the following inpubs:

e A constant term
(in meters) b

o The arsenic level of respondent’s well
o Whether any members of the household are active in community organizations
1 level of the head of household.

¢ model just
organization

o the closest known safe well

» The distance

o to nearest well and then put in

using distand
al membersh'lp, and education.

e The educatio

We shall first fit th

arsenic concentration,

Logistic regression with just 0Ne€ predictor

We fit the Jogistic regression in R
R code £it.1 < glm (switch ~ dist, family=binomial(1'1nk=“1ogit“))

Displaying this yields
a = switch ~ dist, family=binom'1a1(1'1nk=“1ogit"))
coef .est coef .s€
0.6060 0.0603
dist -0.0062 0.0010
8.1 (difference
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al deviance * 4076.2, null deviance = 411
The coefficie ich seems 10W; but this is misleading sin
distance 18 measured s coefficient corresponds 1O the differed
he nearest gafe well and aho

between, 527, & house th
that is 91 meters away-

Figure 5.8 shows the distribution of dist in the data. It geerns more I¢
to rescale distance in 100-meter units:

R output gin(formul

(Intercept)
= 41.9)

residu

asone

R code distl100 < aist/100
gression yields

and refitting the logistic 1@

- aist100, family 11ogit™))

a = switch =b'1nom'1al(1ink=
coef .est coef .se
0.61 0.06

-0.62 0.10
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Figure 5.10 Histogram of arsent

sures

3. More quickly, the

R code

R output

LOGISTIC REGRESSION
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Arsenic concentration in well water

¢ levels in unsafe wells (those €T
esh (see Figure 5.7).

ceeding 0.5) in the mea-

4 area of Arathazor, Banglad

s —0.62/4 = —0.15. This comes out
lated using the derivative because
he middle of the data (see

«divide by 4 rule” gives U

the same, to two decimal places, as Was calcu
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£

Figure 5.9).
In addition to interpreting its ma
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The slope i8 estimated well, with a standard
ed to the coefficient estimate of —0.62. The

cance of th
tistically significantly

error of only 0.10, W
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different from zero.

[-0.82, —0.42], which is clearly sta

Adding a second input variable
adding the arsenic level of the existing

N-switching example by

well as a regression input. At the levels present in the Bangladesh drinking. water,
the health risks from arsenic are roughly proportional to exposure, and so we would
expect switching to be more likely from wells with high arsenic levels. Figure 5.10

shows the arsenic levels of the unsafe wells before gwitching.

4ist100 + arsenic, fami1y=binomia1(1ink=“1ogi’c"))

We now extend the we

£it.3 <- glm (switch ~

which, when displayed, yields

coef .est coef .se
0.00 0.08
-0.90 0.10
0.46 0.04

(Intercept)
dist100
arsenic
n = 3020, k = 3
residual devianc

Thus, comparing two wells with the same
to the nearest safe well corresponds to a 1
ability of switching. Similarly,
to a 0.46 positive difference in the
are statistically significant, each being more than 2 stan
And both their signs make sense: switching is easier if

and if a household’s existing well has 2 high arsenic

motivation to switch.
tion, we divide the coe

For a quick interpreta
in distance corresponds to an approximately
and 1 unit more in arsenic concentration COTTrespo

positive difference in switching probability.
Comparing these two coefficients, it would at first seem that
important factor t termining the probab

ce = 4118.1 (difference = 187.4)

e = 3930.7, null devian

arsenic level, every 100 meters in distanc

egative difference of 0.90 in the logit prob

a difference of 1 in arsenic concentration correspolt

logit probability of switching.
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as a function of arsenic le
: vel of existin
held constant at different representative i)aqfajéi For cach plot, the other input variabl
k . able s

Such a statement is mi

- s misleading, ho

variation than arsenic: , however, because in our d '

0.38 (in units of 100 mlé'ef;;e standard deviation of distanceztftL dtl; £100 showis Jess

‘1 the scale used here. Th ) Whereas.arsenic levels have a stando d ; n?ar.est well is

standard-deviation d-{{ us, the logistic regression coeffici ard deviation of 1.10
ifferences are —0.90-0.38 = —0.34 f. C?‘H‘CS corresponding to 1-

-38 = —0.34 for distance and 0.46-1
46-1.10 =

051 for arsenic level. Dividi
el. Dividing by 4 yields the quick summary esti
estimate of a 1-

standard-deviati i
iation differ in di
ence in distance or arsenic level corre d
sponding to
an 8%

. negatnre d]ﬁerence or a l 390 pos]tnre dlfferen e l‘espeCthely in Pr v-,]t h
S C. )

. i . . . .
e ZCtm

he coefficient for di

- r dist100 cha
senic level is added nges from —0.62 in th igi

¢ X e orj
L neaiest safe W(;lid:;em(idell. kThls change occurs bilfisf?(;l? t0h0.90 when
also likely to be : ells that are f
particularly high in : ar
arsenic.

b
ing the fitted model with two predictors

most natural wa
. y to graph th :
ee-dimensional Pl the regression of
. Sl : Yy on tw i .
edictors plotted rface, with the vertical axis showi o predictors might be as
ever, we ﬁng Onhthe two horizontal axes s showing Pr(y = 1) as a function
- suci gra '
1911 of each of the tgwopi'ls bard to read, so instead we make s
can plot the focys § arlable.s; see Figure 5.11. As with th eparate plots as
e fit for different Vajlp ut variable on the z-axis and u e hn-es in Figure
e (jittered) Ny ues_ of the other input. To producSe g%‘lltlple lines to
ool . ) e Figure 5.11
ecause it is points, forcing zero to be i rig a, we
x a natural baseline comparison foi :ir‘lCiUded n the w—rang,e of
istance:

st, swit ji
; ch.jitter, xlim=c(0,max(dist)))

°8it (cbind (1, x/100, 1.8 j*; coef (£it.3)), add=TRUE)
> L. % coef (£it.3))
’ 3y add:TRUE)

livide = b
€ by 100 here be
B8 i termms of dyas e he plot is in th
$t100 = di e scale of mete
Teated by cbind(1,x/10 dist/100. rs but the
the vector x ( ]
tTucting the
of the vect

0,.5) i .
used internall )bls an n X 3 matrix constructed fro
matrix, R auty y ‘.Bhe curve function), and a ve tm
or %, For the toma‘glcaﬂy expands the scalars 1 . 0;
wo lines, we pick arsenic levels ofagl 5
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and 1.0 because 0.5 is the minimum value of arsenic concentration (since we are

only studying us fe wells), and a difference of 0.5 represents & reasonable
the data (see Figure 5.10).

ers of unsa.
comparison; given the distribution of arsenic Jevels in
Similar commands are 5.11b, showing the probab'ﬂity of

used to make Figure
tion of arseni with distance held constant:

gwitching as & func c concentration
switch.jitbels x1im=c(0 ,max(arsenic) »
curve (invlogit (cbind 1, 0, ) %h coef (fit .3, 2dd=TRUE)
(invlogi®t (cbind “,.5, %) Yxh coef (£it .30, 2dd=TRUE)

plot (arsenic,

R code
curve

gsion with 'mteractions

ding the intera
ic + disthO:arsenic,

5.5 Logistic regre
the two inputs:

modeling by ad
~ 3ist100 + arsen
|Ilogit||))

ction between

We continue our

glm (switch

£it.4 <~
=pinomial (link=

family
display (£it.4)

R code

which yields

coef .est coef .s€

(Intercept) -0.15 0.12
-0.58 0.21

dist100
arsenic 0.56 0.07
dist100: arsenic -0.18 0.10
n = 3020, x = &
idual deviance = 3927.6, pull devianc
e table, we use the following tricks:

To understand the pumbers in th

o Evaluating pred'lctions and interactions ot the mean of the dat
average values of 0.48 for 4ist100 and 1.66 for arseni

of 48 meters to the nearest safe well, and a mean arsenic

unsafe wells).
proximate pred

o Dividing by 4 to get ap
t each regression coefficient in turn.
0.47 is the estimated probability of switching,
of the current

We now interpre
o Constant t€TT 1og'1t'1(f0.15) =
if the distance to the pearest safe well is 0 and the arsenic evel
enic levels all exceed 05 1
term. 1 ;

well is 0. This is ant impossible condition (since ars
(.48

our set of unsafe wells), s0 We do not try to interpret the constant
we can evaluate the predicti dist100 =
1(-0.15 -

on at the average values of
arsenic = 1.66, where the probab'ﬂity of switching is logit™
0.48 4 0.56 -
tance: this ¢oT

.0.48 - 1.66) = 0-59-
o Coefficient for dis responds O
1 in dist100; if the arsenic Jevel is 0 for bot
{1y to interpreb this.
I at the average

R output

o = 4118.1 (digference = 190.5)

res
a, which have

mean distance
.66 among the

ictive differences on the probability seale.

olls that differ P

comparing fwo W
we shot

h wells. Once agall,

Tnstead, we can oo value, arsenic = 1.66, where distance h

coefficient of _0.58 —0.18" 1.66 = —0.88 o1l the logit scale- To quickly intet

this on the probability scale, We divide by 4 —0.88/4 = 0.22. Th\lséa
onds

mean level of arsenic in the data, each 100 meters of distanc
apptoximate 22% bHability of switching. -

negative difference in pro
o Coefficient for arsent onds to comparing tWO wells thab diffe
in arsenic, if the distance to the ne '

¢: this corresp
arest safe well is 0 for both:
& evaluate the comparison att

Tnstead, W' he average value for distance aist

0.48, where arsen

. ic has a i

To quickly inter coefficient of 0.56

pret thi .56 —0.18.0.48 =

i ot the mean 163;18 ;)F ;’h o probability scale ngiiv- (;).47 on the logit scale.

corresponds to an approxim EStance in the data, each adldi.by 4:0.47/4=0.12.
ate 12% positive difference in prloéoréa_‘ll unit of arsenic

ability of switchin
g.

Coefficient for .
the interacti
from one directi action term: this .
ion, for . can be inte :
’.che © officient for éistlaizzzh {a}&t/:‘ldltlonal unit of arsenizp;elted in two ways. Looking
s 0.8 at the average level ‘; have already seen tht t}fe"alue ~0.18 is added to
as saying that the importanc(:e afrzemc’ and so we can und;ﬂ(;:fﬁ(gem for distance
with higher existi of distance a . and the inte i
ing arsenic levels s a predictor increas raction
. es for household
s

Looking at it th
e other
nearest well, the value ZVOa}i,ngr each additional 100 met .
.18 is added to the coefficient efr s of distance to the
or arsenic. We h
: ave

air ady S .
! e cen ”lat (:he C()efﬁ.clellt :[()r dlStaIlce 18 () 4:1 at tkle average dlstarl e tO
g C

nearest safe well and we can un i
: S0 %
; . s i ¢ ‘u derstand the interaction as saying that the
mpor ta:Il ie of arsen C11 as a pre(h(:tor decreases for households lhati are farthe
£ sting safe wells. .

T

Centering the input variables

As discussed ;
earlier in th
makes sense to e context of linea .

_ center the in X r regression, bef; .
coeffici put v » before fit i :
Fcients. The centered inputs ai:ables so that we can more et;rslgl 11_1‘6eract1ons it

: ily interpret the

c.dis 1 <~ -
: distl
£100 t100 mea.n(dlsbloo
* enic <~ arsenic - m a.n( T ;
c.ars e arsenlic

.
‘ aIldardlZe t;hese t}lat 1S, wWe d() IlOt Scale by thell Staulldalld
t 10118 beca»use 1t 18 (:(()I].Venlent tv() be able f]() COllSldeI‘ kIlO W d].:ﬁel ences on tlle
ma;l Scales Of the dat]a, 1()()—Illetel dlSta:IlCeS a;Ild a,ISeIllC-—COIlCGIltIathIl llIllt .
S)

ttz'ng tne Znte7 al}t on 0 7Lg tﬂe (36?“567 ed leuts
2 m del USY
1

an refit the m
~ odel usi
nts mich easi ng the centered i
sier to inter input variabl ; .
pret: es, which will m
ake the

B <
; glm (switch ~ .
1y=binomial(1i ¢.disti00 + ¢ .
link="log1i _arsenic + c.di
glt")) .dist100:c.arseni
. ic,

,; puts, not the predictor. e, W t er the interaction
predictors. Hence, we do not center th
i cti

*arsenic);
- ! ; father, we i .
Displaying fit.5,yie1dsn clude the interaction of the two cent
centered input

coef.est coef.se
0.35 0.04
‘ '8'23 0.10
.arsenic -0.18 8.04
.10

devianc
e = 3927 .6
, null deviance = 4118.1 (diff
. erence = 190.5)

infer
ences on this new scal
e:

logit-—l(
0.35) =0 .
c.arsenic — = 0.59 is the esti
. =0, that is, if di imated probabilit s
\ca“‘{erages in the d;’u;f distance to nearest safe%VO{ISWItChmg’ if
L with our earlier mod'efwe obtained this same c:1 alnd arsenic
with uncentered i culation, but
ed inputs.) ’
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o-interaction model in Figure 5.11.

with interactions: Compare 0 the 1

Arsenic conce

ching from ar unsafe well as @
of existing well, for the model

o Coefficient for distance: this is the coefficient for distance (o the logit scale) if
the probabihty
of arsenic in the

arsenic level is ab its average value. To
99% megative

scale, we divide by 4 -0.8
data, each 100 meters of distance ¢
difference in probab'ﬂity of switching.
o Coefficient for arsenic: this1s the coefh
safe well 18 i value. To
scale, we divide by 4: 0- T/A= 0.12. Thus,
data., each additional unit of arsenic corresponds i

difference in probab'ﬂity of switching.

o Cocfficient for the interaction T this

same 'mterpretation as before.
changed. The linear centering of the

The predictions for new observations are un
predictors changes the {nterpretations of the coefficients but does not change the

underlying model.

cient for arsenic level if distance to nearest
pret this on the probabﬂity
mean level of distance in the
o an approximate 19% positive

is unchanged by centering and has the

gnificance of the interaction

Ascanbes gression table on the previous page, ¢
has an € j i £ —0.13 with a gtandard error of 0.10. The estim
i quite statistically sig-
i enic 1eve

Statistical 84,

is not 4
pificant. However,
pecomes & less important predictor for households that are
d the magnitude of the agsociation ig also plausible. So
following Our genera\. rules for regression coefficients 2

significance, as given i Gection 4.6.

Graphing the model with interactions

ualize the interaction model i

result is shown-1
(with gimilar commart

The cleare
as & fynction

s1im=c(0,ma% (aist) N
.5, _5¥x/100) %% coef(fit.4)), add®
1.0,1.0*;;/100) 5% coef(fit.4)), 2dd

not large in the range of most 0
where the B

R code plot (aist, switch.jitbers
curve (inviogi® (cbind(l,x

curve (invlogit (cbind(l,x/loo,

s clear, the interaction is

Ag Figure 5.12 make
data. The largest pattern that shows uP is in Figure 5.12a,

.disthO .c.arsent:

LOGISTIC
" REGRESSION WITH INTERACTIONS
intersect at around 300
o1 met i
o itehing associated with d;efrfs. This graph shows evidence th 95
a afe woll. but with a dimi erences in arsenic level are 16 i at_ the differences in
%nteraction okos somo sen 1o1sh1ng effect if you are far farge if you are close to
e tion (from the eali se; however, there is some u rom ahy safe well. This
arror of 0.10), and as Fi ‘1er regression table, an estima?certamty in the size of the
ar?hwhere the im:era,ctiogrlll 1}?13;51;332& shows, there are onlilzhf f_eo'ld8 with a standard
" iteraction also a es much of a difference w data points in the
<witching as & function é)fPSf:s in Figure 5.12b, this tir‘ne in
: enic concentration, at two diffe?epltog of probability of
nt levels of distan
ce.

Adding social predictors

Are well user
s more likely .
education? To s y to switch if they h
: ee) we add tWO in y ave COmmun't
putSZ 1wy ConneCtiOnS or
more

e assoc=11
if a househ
o o
e = years of ld member is in any communit
s of education of the well use ity organization
.

We actuall
y work with ed =
ucd = educ/4, for the usual reasons of
ns of making its

regression coeffici
ent more i
of adding fou interpretable—i
‘ ng four years of educati 4 it now represent
on s the Predicti .
: ve difference

g m(f 2l = . . LG
=)
1 (9) ula WLtCh c.dis t100 + c.arsenic + c.dis t100:c.arsenic +

assoc + educ4d i
, family=binomial (1ink="logit"))

(Intercept) cgef .est coef.se
¢ dist100 o, 2(8) 0.07
: 0.11

¢ arsenic 0.48
’ 0.04

0.10
-0.12 0.08
0.17 0.04

.dist100: .
ssoc c.arsenic -0.16

n = 3020, k=86
esidual devian
; ce = 390
‘USeholdS Wlth . f 5.4:, null deviance = 4118.1 (diff
, . nsafe we . ‘ erence =
Hnot predictive of SWitcﬁ'S, belonging to a communit o 212.7)
e C<1)W'ever, persons with hi 11;lg, after controlling for thg aSSOCIatlon surpris-
| eeb0dT/A= gher education o more e O in the
when comparing househ 1ds t or a 4% positive differe y o SWlt?ht the crude
efficient for educatio olds that differ by 4 years of nge in switching prob-
: n e :
fie model. The coeficie atk?s’ sense and is tatisticall cotion”
rs1gn1ﬁcant7 0 We remn or association does not mykmgmﬁcant’ 50 we
excluding regression ;rv Zl t. (See Section 4.6 for aafjus ense and is not
ula = edictors.) We are left with er discussion of

switch ~ .
famile = c.dist100 + .
amily = bi - c.arse i g
binomial (link = "1ogi:?;§:)+ c.dist100:c.arsenic +
R

coef.est coef.se
0.15  0.06

ducatio
: T amon;
ero. W g the 3000
- 1_2 ;eepeated our analyrs‘?:popdents varied from 0 to 1
ars, 2 = 9-12 yearsw?l,tll alg iscrete recoding Cc)Jf ’theaés’ with neatly a
) + years), and our resulzs lé::'tlon variable
re essentiall
Y

example
, we ha
anges,” we referred .
. because the Obserto “coefficients” and “diff
vational nature of the di ;tl:ncgaslf rather than to
makes it difficul
t to

€ regressi
- on mod
tscussi odel causa,
ng the arsenic lly. We continue causal i
problem at the end of Ssa inference more carefull
ection 9.8. yin

R output
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c.dist100 -0.87 0.11

¢.arsenic 0.48 0.04
c.disthO:c.arsenic -0.16 0.10
educé 0.17 0.04
n = 3020, x =5
residual deviance = 3907.9, null deviance = 4118.1 (difference = 210.2)

Adding further interactions
When inputs have large main effects, it is our
interactions a8 well. We first create 2 centered e

general practice 0 include their

ducation variable:

4 - mean(educ4)

ch <~ educ
safe well and arsenic

R code c.edu
2
cting it with distance to nearest

and then fit a new model intera
level of the existing well:

ch”c.disthO 4+ c.arsenic
enic:C .educk,

glm(formula=swit + c.educd c.disthO:c.arsenic +
£ amily=binomial (1ink=" logit™) )

c.distloo:c.educ4 + C€.ars
coef.est coef .se

0.36 0.04
-0.90 0.11
0.49 0.04

0.18 0.04

[ dist100:c. arsenic -0.12 0.10

c.disthO:c.educlL 0.32 0.11
ducéd 0.07 0.04

R, output

(Intercept)
c.dist 100
c.arsenic
c.educk

c.a:csenic:c‘e
= 4118.1 (aifference = 226.4)

p = 3020, k=T
residual deviance * 3891.7, null deviance <
understanding how education modifies

We can interpret these new inter actions by
tance and arsenic.

ifference corresponding to dis
on: a difference of 4 years of education corT®

the predictive d
nce and educati

o Interaction of dista

gponds to & Jifference of 0.32 in the coefficient fo

100 has & negative coefficient ont average;
education reduce distance’s negative association. This makes sense: peo
more education probably have other resources s0 that walking an extra distand
to get water is not such a burden.

o Interaction of arsenic and education: & difference of 4 years of
gponds t0 2 difference of 0.07 in the coefficient for arsenic. As W

o coefficient onl average;

seen, arsenic has a positiv
makes sense: P

increases arsenic’s positive association. This
cation could 4 about the risks of arsenic and

be more informe

to increasing arsenic levels (o, conversely, legs in & hurty to switch
with arsenic levels that are relatively low).
As before, centering allows us

other inputs are held at their average values in

seen, dist

education cort

e have alr
atioll

to interpret the main effects a8 coefficients whe

the data.

Standardizing predictors

We should ghink seriously about stand
when fitting models with interactions. The struggles W

this example guggest that standardization—*by subtracting the me
the continuous input variables and dividing by 2 standard deviations,
near the end of Section 4.9—might be the simplest approach.

ardizing all pre

r dist100. As we have already

thus positive changes 11
ple with
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The second plot shows
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the middle
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pattern in the residuals as & whole, with positive residuals {on average) it
of the Tange of arsenic and negative residuals at the high end.
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elers, & risin n-of residuals

ression mod: g and then falling patter

To experienced reg
5.14bis & signal t0 consider taking the Jogarithm of the predictor
on would be to add & quadratic

guch as in Figure
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senic is an all-positive variable, it makes
he log
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not, however, model dist
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(Intercept)
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mme probability to each © erro.r rate of the null modwlould~ expect it to
' z’)andzt}ie estimated prob This Is skpY logistic regr’e“?wh is simply
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in Section 5.5, w
i . e ke i
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. predict nse In th
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o ducation with distance e only a small amount, to 31)1"3"10115 models. Removin-
more, to 3891.7. and arsenic level redué:es th903.9. Adding interactiong
Transformin © deviane . :
¢ arsemic on © e by quite a bit
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0.17 0.04
viance = 3910.4
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of switching between fhese twWoO househo\ds is
§(arsenic, educd) = logit (=021~ 0.90-1-+ 0.47 - arsenic +0.17 educd)
-1 . X
logit (=021 — 0.90-0+ 0.47 - arsenic 4+ 017 educd) (5.6) (tzgnmder *he average predictive diff
. . . . . e m : i )
We write § as B function of arsenic and educd 1o emphasize that it depends on odel that includes a distance e;ence, ‘?Omparmg dist = 0 to di
the levels of these othe‘r x{arla\f.)les ‘ £it.11 < gln (switch - ai arsenic interaction: o dist = 100, for
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—
’ (Intercept) COeJE(-)est coef .se
; . dist100 by 3  0.13
arsenic 0' gg 0.21 R output
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pi < 1 18t100:arsenic 016 0.04
10 <~ 0 n =‘3020, k=5 ' 0.10
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5.8 Tdentifiability and separation

be nonidentified (that is, have

ilable data and model, as dis- 5.10 Exercises

There are two reasons that a logistic regression can
parameters that cannot be estimated from the ava
cussed in Section 4.5 in the context of linear regression):

1. As with linear regression, if predictors are collinear, then estimation of the lineat
predictor, X, does not allow separate estimation of the individual parameters

B. We can handle this kind of nonidentifiability in the same way that we would
proceed for linear regre

The folder nes contains the

he 1992 electi
: ction
ex, ethnicity, analyzed

survey data of presi
: . presidential
. in Section 5 12 preference and i
- education, party identifcation. ned nopr s, variables inchuding
a logistic r . , and political ideol cluding
Consider b egression predictin eology.
N . OW t0 i g support f .
9. A completely separate identifi from sible interactions include these as regression pl?;ngSh given all these inputs
the discreteness of the data. Evaluate ’ ictors and also consid .
e .
i 21;31 compare the different model TR
ned with the outcome, S0 that y = 1 for al . standard errors, residual T s you have fit. Consider ;
hreshold T, and ¥ = 0 for all cases wher abler' chosen model, discuss plots, and deviances. coefficient
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the cases where Zj exceeds some b
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=1) = logit~(2 1 )
=1)= logit ™! (27)
) = logit™(3 4 o)

y = 0 for all cases wh
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x; > T, then f3; will be —00.
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© pold e probability a child
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sion for: 5, problem
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