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CHAPTER 6

Ceneralized linear models

6.1 Introduction

Generalized linear modeling is a framework for statistical analysis that includes
linear and logistic regression as special cases. Linear regression directly predicts
continuous data y from a linear predictor X3 = fo + X161+ -+ X 3. Logistic
regression predicts Pr(y = 1) for binary data from a linear predictor with an inverse-
logit transformation. A generalized linear model involves:

1. A data vector ¥y = (Y1, -, ¥n)
Predictors X and coefficients 3, forming a linear predictor X3

A link function g, yielding a vector of transformed data § = ¢~ (X 3) that are
used to model the data

data distribution, p(y|%)

ossibly other parameters, such as variances, overdispersions, and cutpoints,
olved in the predictors, link function, and data distribution.

tions in a generalized linear model are the transformation g and the data

ear regression, the transformation is the identity (that is, g(u) = u) and
data distribution is normal, with standard deviation o estimated from data.
tic regression, the transformation is the inverse-logit, g Hu) = logit™* ()
gure 5.2a on page 80) and the data distribution is defined by the proba-
binary data: Pr(y=1) = g.
r discusses several other classes of generalized linear model, which we
convenience:

n model (Section 6.2) is used for count data; that is, where each

yi can equal 0, 1, 2, .... The usual transformation g used here is the
so that g(u) = exp(u) transforms a continuous linear predictor X;03
;. The data distribution is Poisson.

a good idea to add a parameter to this model to capture overdis-

s \{ariation in the data beyond what would be predicted from the
ttion alone.

omial model (Section 6.3) is used in settings where each data
I;i‘fs the number of successes in some number n; of tries. (This n;,
ties for data point 4, is not the same as n, the number of data
mod?l, the transformation g is the inverse-logit and the data

tession, the binomial model is typically improved by the
1spersion parameter.

(ci‘qion 6.4) is the same as logistic regression but with the
bbs" th? normal cumulative distribution, or equivalently
ution instead of the logistic in the latent-data errors.
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o Multinomial logit and probit models (Section 6.5) are extensions of logistic and
probit regressions for categorical data with more than two options, for example

qurvey responses such as Strongly Agrees Agree, Indifferent, Disagre®s Strongly
4 the multi-

Disagree. These models use the logit or probit transformation atl
nomial distribution and require additional parameters to model the multiple

possibiiities of the data.
are further clagsified a8 ordered (for example, Strongly Agree,

Multinomial mo dels
ee) OF unordered (for example, Vanilla, Chocolate, Straw-

..., Strongly Disagr

berry, Other).
els (Section 6.6) replace the usual normal or logistic models

° Robustregression mod
by other (:1'1stributions1 (usually the so-called Student-t family of models) that

allow occasional extreme values.
hrough many of these models, with an example of

This chapter briefly goes b
overdispersed Poisson regression in Section 6.2 and an ordered logistic example in

Section 6.5 Finally, in Qection 6.8 We discuss the connections between generalized

ral models of choice that are used in psychology and eco-

linear models and behavio
pomics, using as an example the logistic regression for well switching in Bangladesh.

The chapter is not intended to be a comprehensive overview of generalized linear
models; rather, We want to give & sense of the variety of regression models that can
be appropriate for different data structures that we have seel in applications.

Fitting genemlized linear models in R

Because of the variety of options involved, generaiized linear modeling catt be more

complicated than linear and logistic regressions. The starting point in R is the gimQ)
sively for logistic regression in Chapter

function, which we have already used exten:
5 and is 2 generaiization of the Jinear-modeling gunction 1mO- ‘We can use glmQ

directly to fit logistic—binomial, probit, and Poisson Tegressions, among others, and
to correct for overdispersion where appropriate, with bayesglm() available when
there is separation of the model is otherwise nonidentified. Ordered logit and probit

Gt using the polr O and bayespolr () functions, unordered

regressions can be
probit models can be fit using the mnp package, and 1t models can be fit using
the hett package in R. (See Appendix C for information on these and other B

packages.) Beyon
in Bugs, as We

6.2 Poisson regression, exposure, and overdispersion

The Poisson distribution 18 used to model variation in count data (that 18, date

{hat can equal 0,1, 2, .. ) After a brief introduction, W illustrate in detail with the

example of New York City police stops that we introduced in Gection 1.2

Traffic accidents

T the Poisson model, each unit corresponds to 2 setting (typicaiiy a
location or & time interval) in which y; events are observed. For example,

1 Inthe statistical literature, generaiized linear models have been defined using
T

models, & particuiar class of data distributions that excludes, for example, the
e the term “generaiized linear model” 0 apply tO any
pone

our purposes; however, We us
and data distribution, not restricting to ex

a linear predictor, link function,
models.

_ cach coefficient as follows:

d this, most of these models and various generaiizations can be fit
discuss in Part 2B of this book 1n the context of multilevel modeling.

POISSON REGRESSION, EXPOSURE, AND OVERDISPERSION

mdex street intersections in a city
at intersection 4 in a given year

As with linear and logisti

_ ogistic regression, th iation i

linear predictors X on, Bhe variation in y can i i
e stant term, & iri:laziifetg?ff}f accidents example, these ?)redic’ij;se }c{opii&idn?d iwdc .
nst ) R inc :
1 indicator for whether t average speed of traffic near the interse o

: he intersecti : ction, and
ogression ol has the form ection has a traffic signal. The basic Poisson

111

and y; could be the number of traffic accidents

y; ~ Poisson(6;).
The parameter f; must be positive
the logarithmic scale: ’

(6.1)

s0 it m i
akes sense to fit a linear regression on

9, = exp(Xi0).
P(E:f) (6.2)

Interpreting Poisson regression coefficients

The coefficients § ¢
an be exponentiated
and tr ipli
example, suppose the traffic accident model istleated as maltiplicative effects For

y; ~ Poisson(exp(2.8 +0.012X1 — 0.20X;2))
. 2 3

where X1 is avera .
ge speed (in mil
X,, = 1if the i - es per hour, or mph) on t
; e intersection has a traffic signal or 0 other)wise iﬁiﬁii e and
' en interpret

. Ille COIlStaIlt teIIIl glVeS tlle 111teICept Of t:he regression th.a;t 18 t}le [)IedlCilOn lf
g b ?

X4 =0and X .
;2 = 0. Since this i .
speed of . - s not possible (no .
0), we will not try to interpret the Const(antsséjic will have an average

Th.e C()e[ﬁ( €1 i ()i )(2] 1S i;lle eXpeCted dl erence 1n y on t € Oga’rlt mIC 8caie Or
ﬁ ¢ . ( ] ] . ] . ] ) E

each additional m
ise?0? =1.012 (ihaolf ;?fﬁc speed. Thus, the expected multiplicative i
‘mph. Since traﬁic SpeedS o P0s1]‘;1ve difference in the rate of traffic aéziedmil“ease
define X; ! vary by tens of mph, it ents per
jass X , it would act
: peed in tens of mph, in which case its coefﬁdizgg mrfrdallifl Taen?)e o
uld be 0.12,

tresponding to a 12% i
1 . b increas ;
n 1t rate per ten mph e (more precisely, 012 = 1.127: 2 12.7% increase)

he coefficient
of X;o tells us th
sienal can b ’ S that the predictive diff ;
ding a g foimd be multiplying the accident ifference of having o tralt
~ reduction of 18%. ’ rate by exp(—0.20) = 0.82

e level. which is not necessa he most appropriate assum
) is not necessarily t st appropriate ass ti
ption

‘lg tlle IIlOdel i() W Sei or € Ie 4 ‘a ‘ i al i s1gna Y ‘
ne i
tv ngS. F T Xamp 3 i S i‘l’lg r C ig S i 1
a.

it SeCtiOIlS in i 1e (:.‘ wWOou 1] U'[ n e € ecte O Ie
- y T i Y

egressy ;
; ion with an erposure input

;ppl'lca.tions .
. of Poisson .
aseline op ¢ regression the count :
exposure.” ’ s can be inter :
posure,” for example, the number of vehiclljerseti?lrcl1 ie’iatwei
at trave

e intersecti

ction. In th

 of eases ; e general Pois :

' ses in . SOn regression I .

1 a process with rate 6; and exposur odel, we think of y; as
€ Uj.

Ys ~ Poisson(uigi)’
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where, as before, 9; = exp(XiB)- The logarithm of the exposure, log(u;), is called
the offset in generalized linear model terminology.

The regression coefficients 3 summarize the associations betw
and 8; (in our example, the rate of traffic accidents per vehicle).

Including log(ezposure ) as a predictor in the Poisson regression. Putting the log-
arithm of the exposure into the model as an offset, as in model (6.3), is equivalent
to including it as a regression predictor, but with its coefficient fixed to the value
1. Another option is t0 include it as a predictor and let its coefficient be estimated

POISSON RE
‘ GRESSION, EXPOSURE, AND OVERDISPERSION

factoi‘:(eth)2 0
.06
factor(eth)3 ~0.18 8.01
n=225, k=3 o

residual deviance =
44133, null deviance = 44877 (diff
erence = 744.1)

cen the predictors

The two ethnicit ;
y coeflicients i
has decreased b are highly statisti ioni
v 744, m ically signifi
no explanatory power 113(;?1 emore than the 2 that would l%ele;;:ctt; ZH,d the fieViance
we see that category 2 (his m,odel. Compared to the baseline ed if ethnicity had
panics) has 6% more stops, and catecategc;r}(f 1 (blacks),
’ gory 3 (whites) has

allow the data to ew o)
18% fewer stops, in proporti
pPs, proportion to DCJS
arrest rates.

from the data. In some settings,
be fit better; in other settings, it is sim
estimated rate 6 has a more

Differences between the binomia

The Poisson model is similar t
but is applied in slig
o If each data point y; can be interpr

o If each data point ¥;

Example: po

For the analysis of police stops:

R output

R output

this makes sense in that it can
pler to just keep it as an offset so that the

direct interpretation.

l and Poisson models

o the binomial model for count data (see Section 6.3)

htly different situations:
eted as the number of
o the binomial/logistic m

generalization.
5] limit—it is not based on a number of

the Poisson/ logarithmic regression
d generalization.

“guccesses” out of n;
trials, then it is standard to us odel (as described in
Section 6.3) or its overdispersed
does not have a natur

independent trials—then it is standard to use

model (as described here) or its overdisperse

lice stops by ethnic group

\

precincts and ethnic groups (i=1,...,m= 3 x 75).

e The units ¢ are
mber of stops of member

o The outcome ¥; i8 the nu
precinct.

e The exposure Ui
precinct in the previous yearl as Te

Services (DCJS).
e The inputs are the

ethnic group in tha

is the number of arrests by people of that
of Criminal Justic

corded by the Department

precinct and ethnicity indexes.

e The predictors are 2 constant, 74 precinct indicators (for example, precincts 2
75, with precinct 1 as the baseline), and 9 ethnicity indicators (for example, 10

hispanics and whites, with blacks as the baseline).

We illustrate model fitting in thre
snd a constant term alone:
glm(formula = stops ~ 1, family=poisson,

coef .est coef .se
-3.4 0.0

e steps. First, we fit a model with the offs

offset=1og(arrests) )

(Intercept)
n =22, k=1

dual deviance = 44877, = 44877 (difference = 0)

resi null deviance

Next, we add ethnicity indicators:
glm(formula = stops ~ factor(eth), family=poisson,
offset=1og(arrests))
coef .est coef.se

(Intercept) -3.30 0.00

s of that ethnic group in that

Now we add the 75 precincts:

gln(formula = stops ~
) ps factor(eth
offset=log(arrests)) ) + factor(precinct), family=pois
= son,

(Intercept) Coeilef); o o
factor(eth)?2 O'OO 0on
factor(eth)3 -0 '42 oot
factor(precinct)?2 -0 .06 0.7
factor (precinct)3 0 ) 54 8 ((3)675

factor(preclnc t) 7 1.4
5
1 0 .08

residusl deviance
. = 2828.6 i
overdispersion g riemes = ‘
Ceranster < 103 4877 (difference =
‘ = 42048.4)

crease of 74 that ’ ) i
ntrolling for Prec\l]rl)cfsd lt)geexp;cl:efl if the precinct, factor were rand .
anics (categories 1 and 2 e; nicity coefficients have c,hangedaIl om noise. After
‘W}(l}ites (category 3) havg, ag«Zi tappig§mately the same rate i fb;)t(;i;blagks and
bed—all in comparison to th a o lower chance than minoriti g stopped,
us, controlli 0 the DCJS arrest rates, whic minorities of being
minorities in r‘;ief?atzr;f 1;“ actually increases lsl‘ivehlclllﬁ:;:nlfeei 2 & bageline.”
can also look at the rzp 5. We explore this issue further in gthien whites
b rates (per DCJS arrgs‘c)mnfC ¢ coefficients in the regression—efCtlon .
€ In precinct 2, exp(0 545)1 ter controlling for ethnicity, ar or example,
-04) = 1.72 times as high in p,recienzlf I;TOleately
g ey and

= 4.09 times .
as high in precin
~ ct 75, as com
pared to the baseli
ine precinct

alﬂlple, StOpS ])y 116] (5] O a[leSlS In 1][6
I].Ce are Compa,l‘ d tO the number f

ear

- isi(; zlﬁa’c the coefficient for the
e € people in that group a
, 2,_75 compared to blacks.
- will exceed 1 for tho
- ;Nas compared to thei
- e shall consider ano
“V1OUS year’s arrests, as

(G :
hispanic” or “white” indicator will b
. .
Simﬂailstot%ped disproportionately to theii
e ly, the coeflicients for the indicator
s cincts vs{here stops are more fre :
o rest rates in the previous year quent
e - 0 ’
o r possible analysis that uses populati
€ exposure. popuation,

the e
'© SXponenti
ed is ap iated coeffici .
o tuall ent for whites is exp(—0.42)

e Y 34% lower— _
er—the approximation exp(—) = 0.66, so their chance

~ 1—8 is accurate only

R output
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standardized residuals, (y-Wiy

POISSON REG
RESSION, EXPOSURE, AND OVERDISP
ERSION

To pro
program the overdispersion test in R:

10

yhat <- predict (
glm.poli
<- ce, =

z <- (stops-yhat)/sqrt (yhat) type='response™)

cat (
lSperSlOn ratio is Sum(z )/
overd 3 2 (n k) \n
H) )

sidual
5

0

-5

cat ("p-val
ue of overdispersion test is "
s ", pchi
pchisq (sum(z°2), n-k), "\n")

standardized ré

-40

h S s 3
l e qu S E p -
S.
2 2
U ()i S a,].ed ta;lldaal dlZed re; ldllals 18 z, 21 OO com aIed tO all ex

[ , pected value of n—k
0 500 1000 1500 2000 2500 - 148 T '
b od the p-value is 1. indicati he estimated overdispersi
) ating that the probability i sion factor is 2700/148 = 18.2
is essentially zero ndom
that a rand
om

5o 000 1600 2000 2500
predic(ed value
) ] ) ‘ variable from a x? .
n in @ Poisson regression model: (@) residuals versus a X14g distribution would b
e as large
as 2700. I
. 1N sum
mary, the police

;

pred‘\cted vaiue

sto .

predicted values, (0) standardized residuals vEFSUS predicted values. A3 expected from the f‘ fs data are overdispersed by a f;

. ) . dicted val . The stand di sctor of 2 would b ) actor of 18, which i

model, the varance of the residuals increases as predicted vOIUes increase. 1he stam ardized ¢ considered la , which is huge—e

residuals should have mMean tion 1 (hence the lines at =2 indicating rge—and also statistically syen.gn overdispersion
1gnificant.

0 and standard devio
ate 95% error pounds). The variance of the standardized residuals 8 much greater  Adjusting inferen
overdispersion: ~ ces for overdispersion

Figure 6.1 Testing for overdispersio

approTim
than 1, sndicating @ large amount of In thi
n this example, th .
, the basic co .
rrection for overdispersion is to mul
multiply all re :
gression

standard errors b
not seriously affected. The par'g' Luckily, it turns out that .
ameter of primary interest is &Ouf ;ﬁam inferences are
s—thelogof ther
ate of

Poisson regressions do not supply an independent variance parameter 7, and as 2 ‘ :EOPS o W%lites compared to black
an be overdispersed and usually are, a point we considered briefly on page b e;egressmn display on page 13 s—which is estimated at —0
sion context. Under the Poisson distribution ack to the original scale, whit 3) and now becomes —0.42 42:£0.01 before (see
) es are stopped at an esti .42 £ 0.04. Transformin
imated 66% of the rate o%

the standard deviation equals the square aCKS’,With an approximat .
oximate 95% i e 50% interval of e~0-42
We define 4 interval of e—0-42:£2-0.04 O[ e=0-42£(2/3)0.04 _ [ 64, 0
% =10.61,0.71] = [0.64,0.67]

Overdispersion

result ¢

21 and pursue further here in a regres
the variance equals the mean—that is,

root of the mean. In the model (6.3), B(y:) = u;f; and sd(yi) = Vuibi-

the standardized residuals:
Y itting the overdi
2 = y;d(@y; . erdispersed-Poisson or negative-bi
2 c re Slmply’ we ca, “binomial m d
A n fit 1 odel
c ; an overdispersed model using th
€ quasipoisSOD f R
amily:

) and an

y; — uibi stops - £
offset= actor (eth
log(arrests)) ) + factor(precinct), famil
? ily=quasipois
son

X ¥ -
Vuibi
c
4 oef.est coef.se ’

where 0, = oXi0 1f the Poisson model is true, then t

mately independent (not exactly independent, since th : —§‘83 0.21

in computing all of them), each with m dard deviation _ 0‘42 0.03

overdispersion, however, We would expect the 2’ e larger, in ab _0:06 0.04

reflecting the extra variation beyond what is predicted under the Poissont mode 0.54 0.30

We can test for overdispersion in classical Poisson regression by computing ths 0.24
" i » 1.41

quares of the n standardized residuals, S it 22, and comparin 0.33

sum of s 7

XEL, i distribution, which is what we would expect under the model (using ™

rather than 7 degrees of freedom 10 account for the estimation of k regress
k, and sO the 1atio;

coefﬁcients). The Xi_k distribution has average value n—

1 <« .2
. . o ) Ui ~ .
estimated overdispersion /n > E Zi ; ~ overdispersed Poisson (u,
—1 (U;z eXp(Xiﬁ>7 LU),

‘he overdi
. rdispersio
. I
rdispersion i the data compared tO the fitt erdispersed Poissgi,r,ameter (estimated at 18.2 in thi )
' s case). Strictl
Yy

ig a summaly of the ove , !
odel for whi is not a si
ich the var single model but
rather describ
€s any

For example, the classical Poisson regression for the police stop ; i .
data points and | = 77 linear predictors. Figure 6.1 plots the residuals ¥ -y o=, iance of the data is w ti
: tod values imes the mean, reducing

standardized residuals z = (Ui ~ 4;)/sd(9:), a8 @ function of predic
the Poisson regression model. As expected from the Poisson model,
the residuals increases as the predicted values increase, i
dardized residuals is ap i constant. Howevel, 7 k
have a variance much gr 1, indicating serious i i arf negative-

1 and over

odel comm
. only used in thi m
n this scenario is the so-called negat
gative-binomial

mean = u;
+ €xp(X; (), overdispersion = w)

bin()mi .
al d],str'b : .
dispersi ibution is conventi
on . entional
but rather in terms of pardiil:’z{ pressed ot
ers a and b
3
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he overdispersion is 14 1/b. One
can be helpful to

distribution is a/b and ©
erization when fitting guch models, and it
ing datasets from the fitted model and checking that they

(see Section 8.3)-
ample, correcting for

116

where the meal of the
must check the paramet

double—check by simulat
the actual data
police stops €%

{
overdispersion using @

We T
multilevel model, in
gistic—binomial model
1 for binary 1) data. The logistic
for count datd, ysing th i istribution (see page
“gyceessess’ out of & speciﬁed pumber of possib'ﬂities,

f success being fit to 2 logistic regression

6.3 Lo
istic regressio

16) to m

with the proba,bﬂity o}

mial model for count datd, applied 10 death sentences

1a) logistic regress
s that were overtumed,

of this analysis are the 34

ate-years in our analysis, sit
1973). For each state-year iy

ate in that year and Ui
higher courts. Our model b

on in the context of a study of the proport'lon
in each of 34 states In the 23 years,
_ 784 state-years (actually, W
have restarted

The bino

Binomial(mi, Di)
Jogit™ " (XiB),

start, we use

Di

where X 18 8 matrix of predictors: To

e A constant term

3, 2 for 197

ators for states
als 1 for 197

o 33 indic
(that is, 2 yariable that equ

e A time trend for years
for 1979, and so on)-
o be written as
~ B'momial(n s, Dst)

yst
Pt = Jogit ™M (p s T Bt),

This model could als

—1972) We prefer the
go bac!

that is, yeal
to be able t0

g for state and ¢ for time {
£ its greater genera,hty. But it is useful

he two formulations.

with subscripts
6.6) because O
forth between t

ata, it 18 possible/in :

Overdz’spersion
by the MmO el.
t
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than is explaine
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parameter o.

More specifi ution with
p, then the mean

cally, if data
of y is mp &l % dard deviation ot Y is

we label i

LOGISTIC-BINOMIAL MODEL

model (6.4), we defi
ne the standardized residual for h d
each data point ¢
as

zp = Yi— Ui
sd(@)
Yi — i

nips(1 — ps)

Where pi = logi -1 A
. git ™" (X:0). If -
approximately in deperidgnt the binomial model is ¢
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n ode an iati ©
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g S 2 .5) on page 114) and e estimated overdi :
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: tailpmnts and is unrelatend_lg ;i ribution. (The n here or Overdispersiml by
o fe) . T
In i)? ur:,l'ber of cases in stat&Yeer;O;atlon n; in models irérgientz t(he e oering
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Normatl (0, 1.62) probabillity density function

=
R

Figure 6.2 Normal density function with mean 0 and standaerd deviation 1.6. For most
practical purposes, this is indistinguishable from the logistic density (Figure 5.5 on page
85). Thus we can interpret coefficients in probit models as logistic regression coefficients

divided by 1.6.
2

6.4 Probit regression: normally distributed latent data

The probit model is the same as the logit, except it replaces the logistic by the
normal distribution (see Figure 5.5). We can write the model directly as

Pr(y; = 1) = ®(X,f),

where ® is the normal cumulative distribution function. In the latent-data formu-
lation,

o 1 ifz>0
Yoo= 10 ifz <0

z = Xf+e

€~ N(O, 1), (68>

that is, a normal distribution for the latent errors with mean 0 and standard devi-
ation 1.
More generally, the model can have an error variance, so that the last line of
(6.8) is replaced by
ei ~ N(0,0?),
but then o is nonidentified, because the model is unchanged if we multiply ¢ by

some constant ¢ and then multiply the vector 8 by ¢ also. Hence we need some
restriction on the parameters, and the standard approach is to fix ¢ = 1 as in (6.8).

Probit or logit?

As is shown in Figure 6.2 (compare to Figtire 5.5 on page 85), the probit model
is close to the logit with the residual standard deviation of € set to 1 rather than
1.6. As a result, coefficients in a probit regression are typically close to logistic
regression coefficients divided by 1.6. For example, here is the probit version of the
logistic regression model on page 88 for well switching:

gim(formula = switch ~ dist100, family=binomial(link="probit"))
coef.est coef.se
(Intercept) 0.38 0.04
dist100 -0.39 0.06
n = 3020, k = 2 ‘
residual deviance = 4076.3, null deviance = 4118.1 (difference = 41.8)
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Tor th,é examples we have seen, the choice of logit or probit model is a matter of
taste or convenience, for example, in interpreting the latent normal errors of probit
models. When we see probit regression coefficients, we can simply multiply them
by 1.6 to obtain the equivalent logistic coefficients. For example, the model we have
just fit; Pr(y = 1) = ®(0.38 — 0.39z), is essentially equivalent to the logistic model
Pry=1) = logit™*(1.6(0.38 — 0.39x)) = logit™'(0.61 — 0.62z), which indeed is the
logit model estimated on page 88. ,

6.5 Ordered and unordered categorical regression

: Logistic and probit regression can be extended to multiple categories, which can

be ordered or unordered. Examples of ordered categorical outcomes include Demo-
crat, Independent, Republican; Yes, Maybe, No; Always, Frequently, Often, Rarely,
Never. Examples of unordered categorical outcomes include Liberal, Labor, Con-
servative; Football, Basketball, Baseball, Hockey; Train, Bus, Automobile, Walk;
White, Black, Hispanic, Asian, Other. We discuss ordered categories first, includ-
ing an extended example, and then briefly discuss regression models for unordered
categorical variables.

The ordered multinomial logit model

Consider a categorical outcome y that can take on the values 1,2,..., K. The
ordered logistic model can be written in two equivalent ways. First we express it as
a series of logistic regressions:

Pry>1) = logit ™ }(X3)
Pr(y >2) = logit™ (X8 — c2)
Pr(y >3) = logit (X8 — c3)

Pr(y > K—1) logit™ (X8 — cx—1).- - (6.9)

The parameters ¢, (which are called thresholds or cutpoints, for reasons which we
shall explain shortly) are constrained to increase: 0 = ¢; < ¢p < - -+ < cx—1, because
the probabilities in (6.9) are strictly decreasing (assuming that all K outcomes have
nonzero probabilities of occurring). Since ¢; is defined to be 0, the model with K
Categories has K —2 free parameters ¢, in addition to (. This makes sense since
K =2 for the usual logistic regression, for which only /3 needs to be estimated.

The cutpoints ¢y, ...,cx_; can be estimated using maximum likelihood, simul-
taneously with the coefficients B. For some datasets, however, the parameters can
be nonidentified, as with logistic regression for binary data (see Section 5.8).

The expressions in (6.9) can be subtracted to get the probabilities of individual
outcomes:

Pr(y > k—1) — Pr(y > k)
logit™ (X8 — cx_1) — logit™1(X 8 — cz).
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Figure 6.3 Illustration of cuipoints in an ordered categorical logistic model. In this example,
there are K = 4 categories and the cutpoints are ¢1 = 0,¢2 = 0.8, c3 = 1.8. The three graphs
illustrate the distribution of the latent outcome z corresponding to three different values of
the linear predictor, X8. For each, the cutpoints show where the outcome y will equal 1,
2, 3, or 4.

Latent variable interpretation with cutpoints

The ordered categorical model is easiest to understand by generalizing the latent
variable formulation (5.4) to K categories:

1 if 2; <0
2 if z; € (O,Cz)
3 if z; € (eg,c3)

K-1 ifze (ex—2,¢r—1)
K if 2y > CKr 1

zi = Xif+e, (6.10)

with independent errors €; that have the logistic distribution, as in (5.4).

Figure 6.3 illustrates the latent variable model and shows how the distance be-
tween any two adjacent cutpoints ci_q, ¢y, affects the probability that y = k. We
can also see that if the linear predictor X B is high enough, y will almost certainly
take on the highest possible value, and if X B is low enough, y will almost certainly
equal the lowest possible value.

Ezxample: storable votes

We illustrate ordered categorical data, analysis with a study from experimental
economics, on the topic of “storable votes.” This example is somewhat complicated,
and illustrates both the use and potential limitations of the ordered logistic model.
In the experiment under study, college students were recruited to play a series of
voting games. In each game, a set of k players vote on two issues, with the twist
being that each player is given a total of 4 votes. On the first issue, a player has
the choice of casting 1, 2, or 3 votes, with the remaining votes cast on the second
issue. The winning side of each issue is decided by majority vote, at which point
the players on the winning side each get positive payoffs, which are drawn from a
uniform distribution on the interval [1, 100].

To increase their expected payoffs, players should follow a strategy of casting more
votes for issues where their potential payofls are higher. The way this experiment, is
conducted, the players are told the distribution of possible payoffs, and they are told
their potential payoff for each issue just before the vote. Thus, in making the choice
of how many votes to cast in the first issue, each player knows his or her potential
payoff for that vote only. Then, the players are told their potential payoffs for the
second vote, but no choice is involved at this point since they will automatically
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Figure 6.4 Data from some example individuals in the storable votes study. Ve'rtical lines
show estimated cutpoints, and curves show ezpected responses as estimated using ordered:
logistic regressions. The two left graphs show data that fit the model reasonably well; the
others fit the model in some ways but not perfectly.

spend all their remaining votes. Players’ strategies can thus be summarized as their
choices of initial votes, y = 1, 2, or 3, given their potential payoff, x.

Figure 6.4 graphs the responses from six of the hundred or so students in the
experiment, with these six chosen to represent several different patterns of data.
We were not surprised to see that responses were generally monotonic—that is,
students tend to spend more votes when their potential payoff is higher—but it
was interesting to see the variety of approximately monotonic strategies that were
chosen.

As is apparent in Figure 6.4, most individuals’ behaviors can-be summarized by
three parameters—the cutpoint between votes of 1 and 2, the cutpoint between 2
and 3, and the fuzziness of these divisions. The two cutpoints characterize the chosen
monotone strategy, and the sharpness of the divisions indicates the consistency with
which the strategy is followed.

Three parameterizations of the ordered logistic model. It is convenient to model
the responses using an ordered logit, using a parameterization slightly different
from that of model (6.10) to match up with our understanding of the monotone
strategies. The model is

1 ifz;<ers
2 if 2 € (c15,c0.5)
3 ifz>co5

z ~ logistic(z;, o). (6.11)

In this model, the cutpoints ¢y 5 and ¢y 5 are on the 1-100 scale of the data z, and
the scale ¢ of the errors e corresponds to the fuzziness of the cutpoints.

This model has the same number of parameters as the conventional parameter-
lzation (6.10)—two regression coefficients have disappeared, while one additional
free cutpoint and an error variance have been added. Here is model (6.10) with
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K = 3 categories and one predictor z,

1 ifz <0
Yi 2 ifz € (O,CQ)
3 ifz >eo

zi = at+pPrte, (6.12)

with independent errors €; ~ logistic(0,1).
Yet another version of the model keeps the two distinct cutpoints but removes
the constant term, «; thus,

1 ifz < Cij2
Yi 2 if Z; & (0, Cz‘g)
3 if z > Co|z

% = fute, (6.13)

with independent errors €; ~ logistic(0,1).
The three models are in fact equivalent, with z;/8 in (6.13) and (z; — @)/8 in
(6.12) corresponding to z; in (6.11) and the parameters matching up as follows:

Model (6.11) Model (6.12) Model (6.13)

€15 —~a/p —c1j2/B
2.5 (ca—)/B —cyi3/B
o 1/8 /6

We prefer parameterization (6.11) because we can directly interpret c1.5 and co 5
as thresholds on the scale of the input z, and o corresponds to the gradualness
of the transitions from 1’s to 2’s and from 2’s to 3’s. It is sometimes convenient,
however, to fit the model using the standard parameterizations (6.12) and (6.13),
and so it is helpful to be able to go back and forth between the models.

Fitting the model in R. We can fit ordered logit (or probit) models using the polr
(“proportional odds logistic regression” ) function, which is part of the MASS package
in R. We illustrate with data from one of the persons in the storable votes study:

polr (factor(y) ~ x)

which yields

Coefficients:
X
0.07911799

Intercepts:
112 213
1.956285 4.049963

From the output we can see this has fitted a model of the form (6.13), with
estimates ﬁ = 0.079, é;j = 1.96 and &3j3 = 4.05. Transforming to model (6.11) using
the table of the three models, we get ¢1.5 = 1.96/0.079 = 24.8, é;.5 = 4.03/0.079 =
51.3, and § = 1/0.079 = 12.7.

Displaying the fitted model. Figure 6.4 shows the cutpoints ¢1 5, ca.5 and expected
votes E(y) as a function of z, as estimated from the data from each of several
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tudents. From the model (6.11), the expected votes can be written as

Bk) = 1-Prly= 1) +2-Pr(y =) + 3 Pr(y = 3o

1 (1 — logit™* <~——-—””" = c“”)) +
g
+2. (logit—l <m-01.5> —logit_l (i{ﬂ_)) +
o (22

+3 logit™! (ﬂ? “(:2‘5) , (6.14)

where logit ™ (z) = €/(1 +¢") is the logistic curve displayed in Figure 5.2a on page
80. Expression (6.14) looks complicated but is easy to program as a function in R:

expected <- functiom (x, c1.5, ¢2.5, sigma){
pl.5 <~ invlogit ((x-c1.5)/sigma)
p2.5 <- invlogit ((x-c2.5)/sigma)
return ((1%(1-pl1.5) + 2%(pl.5-p2.5) + 3%p2.5))
¥

The data, cutpoints, and curves in Figure 6.4 can then be plotted as follows:

plot (x, ¥, x1im=c(0,100), ylim=c(1,3), xlab="Value", ylab="Vote")
lines (zrep (c1.5, 2), c(1,2))

_ lines (rep (c2.5, 2), c(2,3))
curve (expected (x, ¢1.5, ¢2.5, sigma), add=TRUE)

Having displayed these estimates for individuals, the next step is to study the dis-

tribution of the parameters in the population, to understand the range of strategies

applied by the students. In this context, the data have a multilevel structure—30 -
bservations for each of several students—and we pursue this example further in
Section 15.2 in the chapter on multilevel generalized linear models.

Altemative approaches to modeling ordered categorical data

Ordered categorical data can be modeled in several ways, including:
¢ Ordered logit model with K—1 cutpoint parameters, as we have just illustrated.
e The same model in probit form.

Simple linear regression (possibly preceded by a simple transformation of the -
outcome values). This can be a good idea if the number of categories is large
_ and if they can be considered equally spaced. This presupposes that a reasonable
range of the categories is actually used. For example, if ratings are on a 1 to 10

scale, but in practice always equal 9 or 10, then a linear model probably will not
work well.

* Separate logistic regressions—that is, a logistic regression model for y = 1 versus
Y=2,...,K; then, if y > 2, a logistic regression for y = 2 versusy = 3,..., K
_and so on up to a model, if y > K — 1 for y = K—1 versus y = K. Or this can be
set up using the probit model. Separate logistic (or probit) regressions have the
a‘dvantage of more flexibility in fitting data but the disadvantage of losing the
simple latent-variable interpretation of the cutpoint model we have described.

Finally, robit regression, which we discuss in Section 6.6, is a competitor to

;IOgIStiC regression that accounts for occasional aberrant data such as the outlier
I the upper-right plot of Figure 6.4.
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Figure 6.5 Hypothetical data to be fitted using logistic regression: (a) a dataset with an
“outlier” (the unexpected y = 1 value near the upper left); (b) data simulated from g
logistic regression model, with no outliers. In each plot, the dotted and solid lines showy
the fitted logit and robit regressions, respecgively. In each case, the robit line is steeper—
especially for the contaminated data—because it effectively downweights the influence of
points that do not appear to fit the model.

Unordered categorical regression

As discussed at the beginning of Section 6.5, it is sometimes appropriate to model
discrete outcomes as unordered. An example that arose in our research was the well-
switching problem. As described in Section 5.4, households with unsafe wells had
the option to switch to safer wells. But the actual alternatives are more complicated
and can be summarized as: (0) do nothing, (1) switch to an existing private well,
(2) switch to an existing community well, (3) install a new well youtself. If these are
coded as 0, 1, 2, 3, then we can model Pr(y > 1), Pr(y > 2|y > 1), Pr(y = 3|y > 2).
Although the four options could be considered to be ordered in some way, it does not
make sense to apply the ordered multinomial logit or probit model, since different
factors likely influence the three different decisions. Rather, it makes more sense to
fit separate logit (or probit) models to each of the three components of the decision:
(a) do you switch or do nothing? (b) if you switch, do you switch to an existing
well or build a new well yourself? (c¢) if you switch to an existing well, is it a private
or community well? More about this important category of model can be found in
the references at the end of this chapter.

6.6 Robust regression using the ¢ model
The t distribution instead of the normal

When a regression model can have occasional very large errors, it is generally more
appropriate to use a Student-t rather than normal distribution for the errors. The
basic form of the regression is unchanged—y = X8 + e—but with a different dis-
tribution for the ¢’s and thus a slightly different method for estimating 3 (see the
discussion of maximum likelihood estimation in Chapter 18) and a different dis-
tribution for predictions. Regressions estimated using the ¢ model are said to be
robust in that the coefficient estimates are less influenced by individual outlying
data points. Regressions with ¢ errors can be fit using the t1m() function in the
hett package in R.

Robit instead of logit or probit

Logistic regression (and the essentially equivalent probit regression) are flexible
and convenient for modeling binary data, but they can run into problems with
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utliers. Outliers are usually thought of as extreme observations, but in the context

of discrete data, an “outlier” is more.of an unezpected observation. Figure 6.5a
k Justrates, with data simulated from a logistic regression, with an extreme point
switched from 0 to 1. In the context of the logistic model, an observation of y =
1 for this value of z would be extremely unlikely, but in real data this sort of

émisclassification” can definitely occur. Hence this graph represents the sort of
data to which we might fit a logistic regression, even though this model is not
exactly appropriate.

For another illustration of a logistic regression with an aberrant data point, see
the upper-right plot in Figure 6.4. That is an example with three outcomes; for
simplicity, we restrict our attention here to binary outcomes.

Logistic regression can be conveniently “robustified” by generalizing the latent-
data formulation (5.4):

Yi 0 ifz <0

2 = XiB+e,

. {1 if z,>0

to give the latent errors € a ¢ distribution:

€ ~ty (0,”"2>, (6.15)

14

with the degrees-of-freedom parameter v > 2 estimated from the data and the ¢
distribution scaled so that its standard deviation equals 1.

The ¢ model for the ¢;’s allows the occasional unexpected prediction—a positive
value of z for a highly negative value of the linear predictor X3, or vice versa.
Figure 6.5a illustrates with the simulated “contaminated” dataset: the solid line

~ shows Pr(y = 1) as a function of the z for the fitted robit regression, and it is
~ quite a bit steeper than the fitted logistic model. The ¢ distribution effectively
_ downweights the discordant data point so that the model better fits the main part
_of the data.

Figure 6.5b shows what happens with data that actually come from a logistic
model: here, the robit model is close to the logit, which makes sense since it does
not find discrepancies.

Mathematically, the robit model can be considered as a generalization of probit
and an approximate generalization of logit. Probit corresponds to the degrees of

_ freedom v = oo, and logit is very close to the robit model with v = 7.

6.7 Building more complex generalized linear models

The models we have considered so far can handle many regression problems in

_ Practice. For continuous data we start with linear regression with normal errors,

consider appropriate transformations and interactions as discussed in Chapter 4,
and switch to a ¢ error model for data with occasional large errors. For binary data
e lise logit, probit, or perhaps robit, again transforming input variables and con-
Sldermg residual plots as discussed in Chapter 5. For count data, the starting points
are the overdispersed binomial and Poisson distributions, and for discrete outcomes
With more than two categories we can fit ordered or unordered multinomial logit

Of brobit regression. Here we briefly describe some situations where it is helpful to
consider other models.
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Mized discrete/continuous data

Earnings is an example of an outcome variable with both discrete and continuoug
aspects. In our earnings and height regressions in Chapter 4, we preprocessed the
data by removing all respondents with zero earnings. In general, however, it can
be appropriate to model a variable such as earnings in two steps: first a logistic
regression for Pr(y > 0), then a linear regression on log(y), conditional on y > 0,
Predictions for such a model then must be done in two steps, most conveniently
using simulation (see Chapter .

When modeling an outcome in several steps, programming effort is sometimes
required to convert inferences on o the original scale of the data. For example, in a
two-step model for predicting earnings given height and sex, we first use a logistic
regression to predict whether earnings are pogitive:

earn.pos <~ ifelse (earnings>0, 1, 0)
£it.1la <- glm (earn.pos ~ height + male, family=binomial(link="logit"))

yielding the fit

coef .est coef.se
(Intercept) -3.85 2.07
height 0.08 0.03
male 1.70 0.32
n = 1374, k = 3
residual deviance = 988.3, null deviance = 1093.2 (differencg,= 104.9)

We then fit a linear regression to the logarithms of positive earnings:

log.earn <- log(earnings)
£it.1b <- 1m (log.earn ~ height + male, subset = earnings>0)

yielding the fit

coef .est coef.se
(Intercept) 8.12 0.60
height 0.02 0.01
male 0.42 0.07
n= 1187, k = 3
residual sd 0.88, R-Squared = 0.09

Thus, for example, a 66-inch-tall woman has a probability logit™*(~3.8540.08"
66+ 1.70-0) = 0.81, or an 81% chance, of having positive earnings. If her earnings
are positive, their predicted value is exp(8.12+0.02:66+0.42-0) = 12600. Combining
these gives a mixture of a spike at 0 and a lognormal distribution, which is most
easily manipulated using simulations, as we discuss in Sections 7.4 and 25.4.

Latent-data models. Another way to model mixed data is through latent data, for
example positing an “underlying” income level z;—the income that person i would
have if he or she were employed—that is observed only if y; > 0. Tobit regression.
is one such model that is popular in econometrics.

Cockroaches and the zero-inflated Poisson model

The binomial and Poisson models, and their overdispersed generalizations, all can
be expressed in terms of an underlying continuous probability or rate of occurrence
of an event. Sometimes, however, the underlying rate itself has discrete aspects.
For example, in a study of cockroach infestation in city apartments, each apart-
ment i was set up with traps for several days. We label u; as the number of trap-days
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é;nd y; as the number of cockroaches trapped. With a goal of predicting cockroach
sstation given predictors X (including income and ethnicity of the apartment
dwellers, indicators for neighborhood, and measures of quality of the apartment),
we would start with the model
y; ~ overdispersed Poisson (u;eXP ) w). (6.16)
It is possible, however, for the data to have more zeroes (that is, apartments i
with cockroach counts y; = 0) than predicted by this model.? A natural explanation
me apartments have truly a zero (or very near-zero) rate of cockroaches,

s
whereas others simply have zero counts from the discreteness of the data. The
sero-inflated model places (6.16) into a mixture model:

{:0, if §;=0
Yi

~ overdispersed Poisson (u;e*?, w), if 8, =1.

Here, S; is an indicator of whether apartment 4 has any cockroaches at all, and it
could be modeled using logistic regression:

Pr(S;=1)= logit ™} (Xy),

where  is a new set of regression coefficients for this part of the model. Estimating

this two-stage model is not simple—the S;’s are not observed and so one cannot

directly estimate 7y; and we do not know which zero observations correspond to
S, = 0 and which correspond to outcomes of the Poisson distribution, so we cannot
directly estimate 8. Some R functions have been written to fit such models and

they can also be fit using Bugs.

~Other models

The basic choices of linear, logistic, and Poisson models, along with mixtures of
these models and their overdispersed, robust, and multinomial generalizations, can

handle many regression problems. However, other distributional forms have been
used for specific sorts of data; these include exponential, gamma, and Weibull mod-

els for waiting-time data, and hazard models for survival data. More generally,
nonparametric models including generalized additive models, neural networks, and
_many others have been developed for going beyond the generalized linear modeling
framework by allowing data-fitted nonlinear relations between inputs and the data.

. 6.8 Constructive choice models

 So far we have considered regression modeling as a descriptive tool for studying how

an outcome can be predicted given some input variables. A completely different

. g«PPFO&Ch, Sorr}etimes applicable to choice data such as in the examples in Chapters
5 and 6 on logistic regression and generalized linear models, is to model the decisions

as a balancing of goals or utilities.
~ We demonstrate this idea using the example of well switching in Bangladesh

~ gielSection 5.4). How can we understand the relation between distance, arsenic
level, and the decision to switch? It makes sense that people with higher arsenic

‘}S‘?}\l’elslwould be more likely to switch, but what coefficient values should we expect?
should the relation be on the log or linear scale? The actual health risk is believed

- I‘;‘éiraczual example, the overdispersed Poisson model did a reasonable job predicting the
o of zeroes; see page 161. But in other similar datasets the zero-inflated model can both
ense and fit data well, hence our presentation here.
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to be linear in arsenic concentration; does that mean that a logarithmic mode]
is inappropriate? Such questions can be addressed using a model for individual
decisions.

To set up a choice model, we must specify a value function, which represents the
strength of preference for one decision over the other—in this case, the preference
for switching as compared to not switching. The value function is scaled so that zero
represents indifference, positive values correspond to a preference for switching, and
negative values result in not switching. This model is thus similar to the latent-data,
interpretation of logistic regression (see page 85); and in fact that model is a special
case, as we shall see here.

Logistic or probit regression as a choice model in one dimension
4

There are simple one-dimensional choice models that reduce to probit or logit re-
gression with a single predictor, as we illustrate with the model of switching given
distance to nearest well. From page 88, the logistic regression is

glm(formula = switch ~ dist100, family=binomial(link="logit"))
coef.est coef.se
(Intercept) 0.61 0.08
dist100 -0.62 0.10
n = 3020, k = 2
residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)

Now let us think about it from first principles as a decision problem. For house-
hold 4, define

e a; = the benefit of switching from an unsafe to a safe well

/

e b; + c;z; = the cost of switching to a new well a distance x; away.

We are assuming a utility theory in which the benefit (in reduced risk of disease) can
be expressed on the same scale as the cost (the inconvenience of no longer using
one’s own well, plus the additional effort—proportional to distance—required to
carry the water).

Logit model. Under the utility model, household ¢ will switch if a; > b; + ¢;z;.
However, we do not have direct measurements of the a;’s, b;’s, and ¢;’s. All we can
learn from the data is the probability of switching as a function of z;; that is,

Pr(switch) = Pr(y; = 1) = Pr(a; >b; + ¢;3;), (6.17)

treating a;, b;, ¢; as random variables whose distribution is determined by the (un-
known) values of these parameters in the population.
Expression (6.17) can be written as

Pr(y;=1)="Pr (ai —bs >:c¢> )
C;
a re-expression that is useful in that it puts all the random variables in the same
place and reveals that the population relation between y and z depends on the
distribution of (e — b)/c in the population.

For convenience, label d; = (a; — b;)/c¢;: the net benefit of switching to a neigh-
boring well, divided by the cost per distance traveled to a new well. If d; has a
logistic distribution in the population, and if d is independent of z, then Pr(y = 1)
will have the form of a logistic regression on x, as we shall show here.

If d; has a logistic distribution with center u and scale o, then d; = u + oe;,
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Figure 6.6 (a) Hypothesized logistic distribution of di = (a: — b:)/ci in the population and
() corresponding logistic regression curve of the probability of switching given distance.
These both correspond to the model, Pr(y; = 1) = Pr(dy > x;) = logit™(0.61—0.62zx). The
dark part of the curve in (b) corresponds to the range of x (distance in 100-meter units)
in the well-switching data; see Figure 5.9 on page 89.
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Figure 6.7 (a) Hypothesized normal distribution of d; = (a; — b;)/c; with mean 0.98 and
standard deviation 2.6 and (b) corresponding probit regression curve of the probability of
switching given distance. These both correspond to-the model, Pr(y; = 1) = Pr(d; > z;) =
$(0.38 — 0.39z). Compare to Figure 6.6. :

where ¢; has the unit logistic density; see Figure 5.2 on page 80. Then

pe(os =)

g o

- 1
logit™ (E=2) = logit™ (£~ =z),
ogit ( > ogi p Ux |

which is simply a logistic regression with coefficients y1/c and —1/0. We can then fit
the logistic regression and solve for y and o. For example, the well-switching model,
Pr(y = 1) = logit™"(0.61 — 0.62z), corresponds to p/o = 0.61 and —1/0 = —0.62;
thus 0 = 1/0.62 = 1.6 and p = 0.61/0.62 = 0.98. Figure 6.6 shows the distribution
of d, along with the curve of Pr(d > z) as a function of .

Pr(switch) = Pr(d; > x)

Probit model. A similar model is obtained by starting with a normal distribution
for the utility parameter: d ~ N(p,c?). In this case,

pe(tt 7 0)
o o
- () -o[t-1)
o o o
) ®(0.38 — 0.39z)
0.39 = 2.6 and

Pr(switch) = Pr(d; > x)

which is simply a probit regression. The model Pr(y = 1) =
corresponds to u/oc = 0.38 and —1/0 = —0.39; thus ¢ = 1/
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Figure 6.8 Decision options for well switching giveﬁ arsenic level of current well and
distance to the nearest safe well, based on the decision rule: switch if ai - (As), > b; +cwi.

p = 0.38/0.39 = 0.98. Figure 6.7 shows this model, which is nearly identical to
the logistic model shown in Figure 6.6.

Choice models, discrete data regressions, and latent data

Logistic regression and generalized linear models are usually set up as methods
for estimating the probabilities of different outcomes y given predictors . A fitted
model represents an entire population, with the “error” in the model coming in
through probabilities that are not simply 0 or 1 (hence, the gap between data
points and fitted curves in graphs such as Figure 5.9 on page 89).

In contrast, choice models are defined at the level of the individual, as we can see
in the well-switching example, where each household ¢ has, along with its own data
X, i, its own parameters d;, b;,c; that determine its utility function and thus its

decision of whether to switch.

Logistic or probit regression as a choice model in multiple dimensions

We can extend the well-switching model to multiple dimensions by considering the
arsenic level of the current well as a factor in the decision.

e a; - (As), = the benefit of switching from an unsafe well with arsenic level As;
to a safe well. (It makes sense for the benefit to be proportional to the current
arsenic level, because risk is believed to be essentially proportional to cumulative
exposure to arsenic. )

e b; + ciz; = the cost of switching to a new well a distance z; away.

Household 4 should then switch if a; - (As), > bi + cx;—the decision thus depends

on the household’s arsenic level (As);, its distance z; o the nearest well, and its

utility parameters ai, bs, Cse

Figure 6.8 shows the decision space for an individual household, depending on
its arsenic level and distance to the nearest safe well. Given aj, b;, c;, the decision
under this model is deterministic. However, a, b;, ¢; are not directly observauble/&l11
we see are the decisions (y; =0 or 1) for households, given their arsenic levels ASi
and distances z; to the nearest safe well.

Clertain distributions of (a,b, ¢) in the population reduce to the fitted logistic
regression, for example, if a; and ¢; are constants and b;/a; has a logistic distributiol
that is independent of (As); and ;. More generally, choice models reduce to logisti
regressions if the factors come in additively, with coefficients that do not vary i
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the population, and if there is a fixed cost (b; in this
. - e i 1
distribution in the population. (o xample) that has a logistic
Other distributions of (a, b, c) are possible. The corresponding models can be fit
treating these }1t111ty parameters as latent data. There is no easy way of ﬁtting,
such .models using glm() in R (except for the special cases that reduce to logit and
probit), but they can be fit in Bugs (see Exercise 17.7).

Insights from decision models

A choice model can give us some insight even if we do not formally fit it. F

example, in fitting logistic regressions, we found that distance Workgd Well' e
linear predictor, whereas arsenic level fit better on the logarithmic scale. A si o lﬁL
utility analysis Would suggest that both these factors should come in liriear181rlzmp§
t?le transformat}on for arsenic suggests that people are (incorrectly) perceivil}lf’ tl;l

risks on & lf)garlthmic scale-—seeing the difference between 4 to &, say, as no v% .
than t.he .dlfference between 1 and 2. (In addition, our residual, plot, showedo‘sﬁe
complication tha.t people seem to underestimate risks from arsenic levels very cl e‘
t6 0.5, And behind this is the simplifying assumption that all wells with T sonic
levels below 0.5 are “safe.”) e

We can also use the utility model to interpret the coefficient for education in the

: n;odglt—g.nore educated peop.le are more likely to switch, indicating that their costs “
~ of switching are lower, or their perceived benefits from reducing arsenic exposure are

higher. Interactions correspond to dependence among the latent utility parameters

_ in the population.

The model could also be elaborated to consider the full range of individual op-

 tions; which include doing nothing, switching to an existing private well, switching

to an existing community well, or digging a new private well. The decision depends

on the cost of walkin i : -
. g, perception of health risks, financial resources, and future
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