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Editor’s Introduction

it is indeed a great pleasure for us to publish, at long last, a paper on
applied regression analysis. We have searched long and hard for just the
right author and manuscript because of the importance of this topic to
our seriecs. In APPLIED REGRESSION: AN INTRODUCTION,
Michael S. Lewis-Beck has fulfilled our hopes and ¢xpectations and then
some. Dr. Lewis-Beck writes with simplicity and clarity, and without dis-
tortion. The budding social science researcher will find, I believe, that
Lewis-Beck’s manuscript is the ideal starting point for an introductory,
nontechnical treatment of regression analysis. The emphasis here is on
applied regression analysis, and Dr. Lewis-Beck provides several clever
examples to drive home important points on the uses and abuses of regres-
sion analysis. His examples include the determinants of income, including
education, seniority, sex, and partisan preference as independent variables;
the factors affecting coal mining fatalities; factors affecting votes for
Peron in Argentina; and several additional practical applications of
regression analysis.

Lewis-Beck uses his many examples to excellent advantage in expli-
cating the assumptions underlying regression analysis. He provides a
handy list of these assumptions, and then has a lengthy section wherein
he gives a very nice verbal éxplanation of what each assumption means
in practical terms and its substantive implications. The beginner will
rapidly develop an appreciation of these assumptions, their importance,
and how to assess them in any particular substantive problem he or she
may wish to address.

Professor Lewis-Beck provides a straightforward treatment of the
slope estimate and the intercept estimate in regression analysis and their
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interpretation. Techniques available for assessing the “goodness of fit”
of a regression line are presented and interpreted, including a discussion
of the coefficient of determination and tests of significance, the latter
presented within a more general discussion of confidence intervals. The
discussion of significance tests, including one-tailed versus two-tailed
tests, is much superior to that provided in most introductory treatments
of applied regression. Another outstanding section is the treatment of the
analysis of residuals, or error terms, in regression analysis. Their diag-
nostic potential is clearly demonstrated in the assessment of the assump-~
tions of the regression model. This presentation is remarkably thorough,
particularly given the space limitations that our series imposes on authors.
We emphasize a limited, introductory treatment of these topics, and
Professor Lewis-Beck is better than most of us at clarifying a complex
topic in a minimum amount of space.

Finally, in the third chapter, multiple regression analysis is explicated.
(The first two chapters deal only with bivariate regression. The compli-
cations of multivariate regression are presented later.) Building on the
treatment of bivariate regression, the principles of multiple regression
are briefly, yet lucidly covered. Each of the major points covered for
bivariate regression is expanded upon in the multivariate context, and
the additional complications of interaction effects and multicollinearity
are given considerable attention. There is also some attention devoted to
specification error and levels of measurement, including the analysis of
dummy variables, in the concluding chapter. Examples abound, illus-
trating each of the problems covered in the text,

The importance of this paper cannot be overemphasized. Perhaps
more than any other statistical technique, regression analysis cuts across
the disciplinary boundaries of the social sciences. Listing its uses is not
even necessary, since all social science researchers who have attempted
empirical research, or who have attempted to keep abreast of recent
developments in their field, have undoubtedly concluded that some under-
standing of regression is necessary. It is perhaps most developed in eco-
nomics, where econometrics is a common part of every graduate cur-
riculum, but researchers in psychology, sociology, political science, an-
thropology, mass communications, social work, public affairs, and many
others are not far behind.

—John L. Sullivan, Series Editor
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1. BIVARIATE REGRESSION:
FITTING A STRAIGHT LINE

Social researchers often inquire about the relationship between two
variables. Numerous examples come to mind. Do men participate more
in politics than do women? Is the working class more liberal than the
middle class? Are Democratic members of Congress bigger spenders of
the taxpayer's dollar than Republicans? Are changes in the unemployment
rate associated with changes in the President’s popularity at the polls?
These are specific instances of the common query, “What is the relation-
ship between variable X and variable Y?” One answer comes from bi-
variate regression, a straightforward technique which involves fitting a
line to a scatter of points.

Exact Versus Inexact Relationships

Two variables, X and Y, may be related to each other exactly or in-
exactly. In the physical sciences, variables frequently have an exact
relationship to each other. The simplest such relationship between an
independent variable (the “cause™), labelled X, and a dependent variable
(the “effect”), labelled Y, is a straight line, expressed in the formula,

Y =a+bX,

where the values of the coefficients, a and b, determine, respectively, the
precise height and steepness of the line. Thus, the coefficient a is referred
to as the intercept or constant, and the coefficient b is referred to as the
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slope. The hypothetical data in Table 1, for example, indicate that Y is
linearly related to X by the following equation,

Y=5+2X.

This straight line is fitted to these data in Figure la. We note that for
each observation on X, one and only one Y value is possible. When, for
instance, X equals one, Y must equal seven. If X increases one unit in
value, then Y necessarily increases by precisely two units. Hence, knowing
the X score, the Y score can be perfectly predicted. A real world example
with which we are all familiar is

Y=32+9/5X,

where temperature in Fahrenheit (Y) is an exact linear function of temper-
ature in Celsius (X).

in contrast, relationships between variables in the social sciences are
almost always inexact. The equation for a linear relationship between
two social science variables would be written, more realistically, as

Y=a+bX+e,

where ¢ represents the presence of error. A typical linear relationship for
social science data is pictured in Figure 1b. The equation for these data
happens to be the same as that for the data of Table 1, except for the addi-
tion of the error term,

Y=5+2X+te.

TABLE 1
Perfect Linear Relationship between X and Y

¥ =5+ 2X
X Y
0 5
1 7
2 9
3 X
4 13
5 15
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Figures 1a-b: Exact and Inexact Linear Relationships between X and Y
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Figures 2a-c: Some Free-hand Straight Line Fits to a Scatter of Points
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The error term acknowledges that the prediction equation by itself,
¥=5+2x,

does not perfectly predict Y. (The ¥ distinguishes the predicted Y from
the observed Y.) Every Y value does not fal} exactly on the line. Thus, with
a given X, there may occur more than one Y. For example, with X = 1, we
see there is a Y = 7, as predicted, but also there is 2 Y = 9. In other words,
knowing X, we do not always know Y.

This inexactness is not surprising. If, for instance, X = number of
elections voted in (since the last presidential election), and Y = campaign
contributions (in dollars), we would not expect everyone who voted in,
say, three elections to contribute exactly the same amount to campaigns.
Still, we would anticipate that someone voting three times would likely
contribute more than someone voting one time, and less than someone
voting five times. Put another way, a person’s campaign contribution is
likely to be a linear function of electoral participation, plus some error,
which is the situation described in Figure 1b.

The Least Squares Principle

In postulating relationships among social science variables, we com-
monly assume linearity. Of course, this assumption is not always correct.
Its adoption, at least as a starting point, might be justified on several
grounds. First, numerous relationships have been found empirically to be
linear. Second, the linear specification is generally the most parsimonious.
Third, our theory is often so weak that we are not at all sure what the non-
linear specification would be. Fourth, inspection of the data themselves
may fail to suggest a clear alternative to the straight line model. {All too
frequently, the scatterplot may look like nothing so much as a large
chocolate chip cookie.} Below, we focus on establishing a linear relation-
ship between variables. Nevertheless, we should always be alert to the
possibility that a relationship is actually nonlinear.

Given that we want to relate Y to X with a straight line, the question
arises as to which, out of all possible straight lines, we should choose. For
the scatterplot of Figure 2a we have sketched in free-hand the line I,
defined by this prediction equation: '

Y=a +bh X,

One observes that the line does not predict perfectly, for example, the
vertical distance from Observation | to the line is three units. The predic-
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tion error for this Observation 1, or any other observation, i, is calculated
as follows:

prediction error = observed - predicted = Y; - {fi.

Summing the prediction error for all the observations would yield a total
prediction error (TPE), total prediction error = 5(Y, - Y) (+3-3+4) = 4.

Clearly, line | fits the data better than free-hand line 2 (see Figure 2b),
represented by the equation,

‘:’ = a; + b X,

(TPE for line 2 = 18). However, there are a4 vast number of straight lines
besides line 2 to which line | could be compared. Does line 1 reduce pre-
diction error to the minimum, or is there some other line which could do
better? Obviously, we cannot possibly evaluate all the free-hand straight
lines that could be sketched on the scatterplot. Instead, we rely on the
calculus, in order to discover the values of a and b which generate the line
with the lowest prediction erfor.

Before presenting this solution, however, it is necessary to modify some-
what our notion of prediction error. Note that line 3 (see Figure 2c¢),
indicated by the equation,

Y = a; + biX,

provides a fit that is patently less good than line 1. Nevertheless, the
TPE = 0 for line 3. This exampile reveals that TPE is an inadequate measure
of error, because the positive errors tend to cancel out the negative errors
(here, ~6-4 + 10 = 0). One way to overcome this problem of opposite signs
is to square each error. (We reject the use of the absolute value of the
errors because it fails to account adequately for large errors and is com-
putationally unwieldy.) Our goal, then, becomes one of selecting the
straight line which minimizes the sum of the squares of the errors (SSE):

SSE = (Y - Y

Through the use of the calculus, it can be shown that this sum of squares
is at a minimum, or “least,” when the coefficients a and b are calculated
as follows:

2(X, - X) (Y, - \2

2(X, - X)?

a=Y . bX.
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These values of a and b are our “least squares” estimates,

At this point it is appropriate to apply the least squares principle in a
research example. Suppose we are studying income differences among
local government employees in Riverside, a hypothetical medium-size
midwestern city. Exploratory interviews suggest a relationship between
income and education. Specifically, those employees with more formal
training appear to receive better pay. In an attempt to verify whether this
is so, we gather relevant data.

The Data

We do not have the time or money to interview all 306 employees on the
city payroll. Therefore, we decide to interview a simple random sample
of 32, selected from the personnel list which the city clerk kindly provided. !
{The symbol for a sample is “n,” s0 we can write n = 32.) The data obtained
on the current annual income (labelled variable Y) and the number of
years of formal education (labelled variable X) of each respondent is
given in Table 2.

The Scatterpiot

From simply reading the figures in Table 2, it is difficult to tell whether
there is a relationship between education (X) and income (Y). However,
the picture becomes clearer when the data are arranged in a scatterplot.
In Figure 3, education scores are plotted along the X-axis, and income
scores along the Y-axis. Every respondent is represented by a point,
located where a perpendicular line from his or her X value intersects a
perpendicular line from his or her Y value. For example, the dotted lines
in Figure 3 fix the position of Respondent 3, who has an income of $6898
and six years of education,

Visual inspection of this scatterplot suggests the relationship is essen-
tially linear, with more years of education leading to higher income. In
equation form, the relationship appears as,

Yza+bX+e,
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TABLE 2
Data on Education and Income

Education {in years} Income (in daoliars)
Respondent X Y

1 4 $ 6281

2 4 10516

3 8 6898

4 6 8212

B 3] 11744

6 8 8618

7 8 10011

8 8 12408

a B8 14664
10 10 7472
11 10 11598
12 10 15336
13 11 10186
14 12 9771
15 2 12444
16 12 14213
17 12 16908
18 12 18347
19 i3 19546
20 14 12660
21 14 16326
22 15 12772
23 5 17218
24 16 12599
25 16 14852
26 16 19138
27 16 21779
28 17 16428
28 17 20018
30 18 16626
3 18 19414
32 20 18822

where Y = respondent’s annual income (in dollars,), X = respondent’s
forma! education (in years), a = intercept, b = slope, e = error.
Estimating this equation with least squares yields,

Y = 5078 + 732 X,

which indicates the straight line that best fits this scatter of points (see
Figure 4). This prediction equation is commonly referred to as a bivariate
regression equation. (Further, we say Y has been “regressed on” X.)
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Figure 3: Scatterplot of Education and Income

The Slope

Interpretation of the estimates is uncomplicated. Let us first consider
the estimate of the slope, b. The slope estimate indicates the average change
in Y associated with a unit change in X. In our Riverside example, the
slope estimate, 732, says that 2 one-year increase in an employee’s amount
of formal education is associated with an average annual income increase
of §732. Put another way, we expect an employee with, say, 11 vears of
education to have an income that is $732 more than an employee having
only 10 years of education. We can see how the slope dictates the change
in Y for a unit change in X by studying Figure 4, which locates the ex-
pected values of Y, given X = 10, and X = 11, respectively.

Note that the slope tells us only the gverage change in Y thaf accom-
panies a unit change in X. The relationship between social science variables
is inexact, that is, there is always error. For instance, we would not suppose
that an additional year of education for any particular Riverside em-
ployee would be associated with an income rise of exactly $732. However,
when we look at a large number of employees who have managed to
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Figure 4: The Regression Line for the income and Education Data

acquire this extra year of schooling, the average of their individual income
gains would be about $732.

The slope estimate suggests the average change in Y caused by a unit
change in X. Of course, this causal language may be inappropriate. The
regression of Y on X might support your notion of the causal process, but
it canndt establish it, To appreciate this critical point, realize that it would
be a simple matter to apply least squares to the following regression
equation,

X=a+b¥Y+e,

where X = the dependent variable, Y = the independent variable. Obviously.
such a computational exercise would not suddenly reverse the causal
order of X and Y in the real world. The correct causal ordering of the
variables is determined outside the estimation procedure. In practice, it
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is based on theoretical considerations, good judgment, and past research.
With regard to our Riverside example, the actual causal relationship of
these variables does seem to be reflected in our original model; that is,
shifts in education appear likely to cause shifts in income; but, the view
that changes in income cause changes in formal years of education is
implausible, at least in this instance. Thus, it is only somewhat adventure-
some to conclude that a one-year increase in formal education causes
income to increase $732, en the average.

The Intercept

The intercept, a, is so called because it indicates the point where the
regression line “intercepts” the Y-axis. It estimates the average value of
Y when X equals zero. Thus, in our Riverside example, the intercept
estimate suggests that the expected income for someone with no formal
education would be $5078. This particular estimate highlights worthwhile
cautions to observe when interpreting the intercept. First, one should be
leery of making a prediction for Y based on an X value beyond the range
of the data. In this example, the lowest level of educaticnal attainment is
four years; therefore, it is risky to extrapolate to the income of someone
with zero years of education. Quite literally, we would be generalizing
beyond the realm of our experience, and so may be way off the mark.
If we are actually interested in those with no education, then we would
do better to gather data on them.

A second problem may arise if the intercept has a negative value, Then,
when X = 0, the predicted Y would necessarily equal the negative value.
Often, however, in the real world it is impossible to have a score on Y
that is below zero, for example, a Riverside émployee could not receive
a minus income. In such cases, the intercept is “nonsense,” if taken literaily.
Its utility would be restricted to ensuring that a prediction “comes out
right.” It is a constant that must always be added on to the slope com-
ponent, “bX,” for Y to be properly estimated. Drawing on an analogy
from the economics of the firm, the intercept represents a “fixed cost”
that must be included along with the “varying costs” determined by other
factors, in order to calculate “total cost.”

Prediction

Knowing the intercept and the slope, we can predict Y for a given X
value. For instance, if we encounter a Riverside city employee with 10
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years of schooling, then we would predict his or her income would be
$12,398, as the following calculations show:

Y= 5078 + 732 X
= 5078 + 732(10)
= 5078 + 7320

¥ = 12,398,

In our research, we might be primarily interested in prediction, rather
than explanation. That is, we may not be directly concerned with identi-
fying the variables that cause the dependent variable under study; instead,
we may want to locate the variables that will allow us to make accurate
guesses about the value of the dependent variable. For instance, in studying
elections, we may simply want to predict winning candidates, not caring
much about why they win, Of course, predictive models are not completely
distinct from explanatory models. Commonly, a good explanatory model
will predict fairly well. Similarly, an accurate predictive model is usually
based on causal variables, or their surrogates. In developing a regression
model, the research question dictates whether one emphasizes prediction
or explanation. It is safe to conclude that, generally, social scientists
stress explanation rather than prediction.

Assessing Explanatory Power: The R?

We want to know how powerful an explanation (or prediction) our
regression model provides. More technically, how well does the regression
equation account for variations in the dependent variable? A preliminary
judgment comes from visual inspection of the scatterplot. The closer the
regression line to the points, the better the equation “fits” the data. While
such “eyeballing” is an essential first step in determining the “goodness of
fit” of a model, we obviously need 2 more formal measure, which the
coefficient of determination (R?) gives us.

We begin our discussion by considering the problem of predicting Y.
If we only have observations on Y, then the best prediction for Y is always
the estimated mean of Y. Obviously, guessing this average score for each
case will result in many poor predictions. However, knowing the values
of X, our predictive power can be improved, provided that X is related
to Y. The question, then, is how much does this knowledge of X improve
our prediction of Y?

In Figure 5 is a scatterplot, with a regression line fitted to the points.
Consider prediction of a specific case, Y). Ignoring the X score, the best
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guess for the Y score would be the mean, §. There is a good deal of error
in this guess, as indicated by the deviation of the actual score from the
mean, Y, - Y. However, by utilizing our knowledge of the relationship
of X to Y, we can better this prediction. For the particular value, X,, the
regression line predicts the dependent variable is equal to ¥, whichis a
clear improvement over the previous guess. Thus, the regression line has
managed to account for some of the deviation of this observation from
the mean; specifically, it “explains”™ the portion, Y, - Y. Nevertheless,
our regression prediction is not perfect, but rather is off by the quantity,
Y: - Yy; this deviation is left “unexplained” by the regression equation.
In brief, the deviation of Y, from the mean can be grouped into the follow-
ing components:

(Y, - Y) =total deviation of Y, from the mean, ¥
({’} ~Y) =explained deviation of Y, fromY
(Y, - Qi) = unexplained deviation of Y, from Y.

We can calculate these deviations for each observation in our study.
If we first square the deviations, then sum them, we obtain the complete
components of variation for the dependent variable:

Z(Y; ~ 2 =total sum of squared deviations (TSS)

E(HA(E e ‘?)2 = regression (explained) sum of squared
deviations (RSS)

Z(Y; — i’i)z = error (unexplained) sum of squared
deviations (ESS).

From this, we derive,
TSS = RSS + ESS.

The TSS indicates the total variation in the dependent variable that we
would like to explain. This total variation can be divided into two parts:
the part accounted for by the regression equation (RSS) and the part the
regression equation cannot account for, ESS. (We recall that the least
squares procedure guarantees that this error component is at minimum.)
Clearly, the larger RSS relative to TSS, the better. This notion forms the
basis of the R? measure:

R? = RSS/TSS.
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Eigure 5: Components of Variationin Y

The coefficient of determination, R?, indicates the explanatory power
of the bivariate regression model. It records the proportion of variation
in the dependent variable “explained” or “accounted for” by the inde-
pendent variable. The possible values of the measure range from “+17
to “0.” At the one extreme, when R? = I, the independent variable com-
pletely accounts for variation in the dependent variable. All observations
fall on the regression line, so knowing X enables the prediction of Y with-
out error. Figure 6a provides an example where R? = 1. At the other ex-
treme, when R* = 0, the independent variable accounts for no variation
in the dependent variable. The knowledge of X is no help in predicting Y,
for the two variables are totally independent of each other. Figure 6b
gives an example where R? = 0 (note that the slope of the line also equals
zero). Generally, R? falls between these two extremes, Then, the closer
R? is to 1, the better the fit of the regression line to the points, and the
more variation in Y is explained by X. In our Riverside example, R’=.56.
Thus, we could say that education, the independent variable, accounts
for an estimated 569 of the variation in income, the dependent variable.
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In regression-analysis, we are virtually always pleased when the R%is
high, because it indicates we are accounting for a large portion of the vari-
ation in the phenomenon under study. Further, a very high R* (say
about .9) is essential if our predictions are to be accurate. (In practice, it is
difficult to attain an R? of this magnitude. Thus, quantitative social
scientists, at least outside economics, seldom make predictions.} However,
a sizable R? does not necessarily mean we have a causal explanation for
the dependent variable; instead, we may merely have provided a statistical
explanation. In the Riverside case, suppose we regressed respondent’s
current income, Y, on income of the previous year, Y. Our revised
equation would be as follows:

Y=a+tbYem te

The R? for this new equation would be quite large (above .9), but it would
not really tell us what causes income to vary; rather, it offers merely a
statistical explanation. The original equation, where education was the
independent variable, provides a more convincing causal explanation of
income variation, despite the lower R* of .56.

Even if estimation vields an R that is rather small (say below .2), dis-
appointment need not be inevitable, for it can be informative. It may
suggest that the linear assumption of the R? is incorrect. If we turn to the
scatterplot, we might discover that X and Y actually have a close relation-
ship, but it is nonlinear, For instance, the curve (a parabola) formed by
connecting the points in Figure 6¢ illustrates a perfect relationship be-
tween X and Y (i.e., Y = X?), but R? = 0. Suppose, however, that we rule
out nonlinearity. Then, a low.R? can still reveal that X does help explain
Y, but contributes a rather small amount to that explanation. Finally,
of course, an extremely low R* (near 0), offers very useful information,
for it implies that Y has virtually no linear dependency on X.

A final point on the interpretation of R? deserves mention. Suppose
we estimate the same bivariate regression model for two samples from
different populations, labelled | and 2. (For example, we wish to compare
the income-education model from Riverside to the income-education
model from Flatburg,) The R* for sample 1 could differ from the R? for
sample 2, even though the parameter estimates for cach were exactly
the same. It simply implies that the structural relationship between the
variables is the same (a; = az; by = by), but it is less predictable in popula-
tion 2. In other words, the same equation provides the best possible fit
for both samples but, in the second instance, is less satisfactory as a total
explanation of the dependent variable. Visually, this is clear. We can see,
in comparing Figures 7a and 7b, that the points are clustered more tightly
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Figures 7a-b: Tight Fit vs. Loose Fit of a Regression Line

around the regression line of Figure 7a, indicating the mode! fits those
data better. Thus, the independent variable, X, appears 2 more important
determinant of Y in sample | than in sample 2.

R? Versusr

The relationship between the coefficient of determination. R’ and
the estimate of the correlation coefficient, r, is straightforward:

R*= 1.

This equality suggests a possible problem with r, which is a commonly
used measure of strength of association.? That is, r can inflate the impor-
tance of the relationship between X and Y. For instance, a correlation
of .5 implies to the unwary reader that one-half of Y is being explained
by X, since a perfect correlation is 1.0. Actually, though, we know that
the r = .5 means that X explains only 259 of the variation in Y (because

=.25), which leaves fully three-fourths of the variationin Y unaccounted
for (The r will equal the R? only at the extremes, when r = %1 or 0.) By
relying on r rather than R?, the impact of X on Y can be made to seem
much greater than it is. l—!ence, to assess the strength of the relationship
between the independent variable and the dependent variable, the R? is
the preferred measure,




L’\‘\-i‘l.\,

26

2. BIVARIATE REGRESSION:
ASSUMPTIONS AND INFERENCES

Recall that the foregoing regression results from the Riverside study
are based on a sample of the city employees (n= 32). Since we wish to make
accurate inferences about the actual population values of the intercept
and slope parameters, this bivariate regression model should meet certain
assumptions. For the population, the bivariate regression model is,

Yi=a+BXi+€i,

where the Greek letters indicate it is the population equation, and we have
included the subscript, i, which refers to the i™ observation. With the
sample, we calculate

Yiza+bXi+e
In order to infer accurately the true population values, a and B, from
these sample values, a and b, we make the following assumptions.
The Regression Assumptions
1. No specification eyror.
a. The relationship between X; and Y is linear.
b. No relevant independent variables have been excluded,
c. No irrelevant independent variables have been inciuded.
2. No measurement error.
a. The variables X; and Y, are accurately measured.
3. The following assumptions concern the error term, €;:
a. Zero mean: E(e) =0.

i. For each observation, the expected valye of the error term is
zero. (We use the symbol E( ) for expected value which, for a
random variable, is simply equal to its mean.)

b. Homoskedasticity: E(eiz) =62

i The variance of the error term is constant for all values of X;.
¢. No autocorrelation: E(ge;) =0 {i+i).

i. The error terms are uncorrelated.

d. The independent variable is uncorrelated with the error term:
E(e;X)=0.

e. Normality.

i. The error term, ¢, is normaily distributed.
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When assumptions | to 3d are met, desirable estimators of the population
parameters, « and B8, will be obtained; technically, they will be the “best
linear unbiased estimates,” BLUE. (An unbiased estimator correctly
estimates the population parameter, on the average, i.e., E(b) = 8. For
instance, if we repeatedly draw samples from the population, each time
recalculating b, we would expect the average of all these b’s to equal 8.)
If the normality assumption (3e) also holds, they will be the “best un-
biased estimates,” and we can carry out significance tests, in order to
determine how likely it is that the population parameter values differ
from zero. Below, we consider each assumption in more detail.

The first assumption, absence of specification error, is critical. In sum,
it asserts that the theoretical model embodied in the equation is correct.
That is, the functional form of the relationship is actually a straight line,
and no variables have been improperly excluded or included as “causes.”
Let us examine the Riverside example for specification error. Visual
mspecnon of the shape of the scatterplot (see Figure 4), along with the

= .56, indicates that the relationship is essentially linear. However, it
seems likely that relevant variables have been excluded, for factors besides
education undoubtedly influence income. These other variables should
be identified and brought into the equation, both to provide a more
complete explanation and to assess the impact of education after addi-
tional forces are taken into account. (We take up this task in the next
chapter.) The final aspect of specification error, inclusion of an irrelevant
variable, argues that education might not really be associated with income.
To evaluate this possibility, we will perform a test for statistical signifi-
cance.

The need for the second assumption, no measurement error, is self-
evident. If our measures are inaccurate, then our estimates are likely to be
inaccurate. For instance, with the Riverside case, suppose that in the
measurement of the education variable, the respondents tended to report
the number of years of schooling they would fike to have had, rather
than the number of years of schooling they actually had. If we were to
use such a variable to indicate actual years of schooling, it would contain
error, and the resulting regression coefficient would not accurately reflect
the impact of actual education on income. When the analyst cannot safely
rule out the possibility of measurement error, then the magnitude of the
estimation problem depends on the nature and location of the error.
If only the dependent variable is measured with error, then the least
squares estimates may remain unbiased, provided the error is “random.’
However, if the independent variable is measured with any error, then
the least squares estimates will be biased. In this circumstance, all solu-
tions are problematic. The most oft-cited approach is instrumental vari-
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ables estimation, but it cannot promise the restoration of unbiased pa-
rameter estimates.

The third set of assumptions involve the error term. The initial one,
a zero mean, is of little concern because, regardless, the least squares
estimate of the slope is unchanged. 1t is true that, if this assumption is not
met, the intercept estimate will be biased. Nevertheless, since the intercept
estimate is often of secondary interest in social science research, this
potential source of bias is rather unimportant.

Violating the assumption of homoskedasticity is more serious. While
the least squares estimates continue to be unbiased, the significance tests
and confidence intervals would be wrong. Let us examine Figure 4 from
the Riverside study. Homoskedasticity would appear to be present,
because the variance in prediction errors is more or less constant across
the values of X; that is, the points snuggle in a band of equal width above
and below the regression line. If, instead, the points fanned out from the
regression line as the value of X increased, the assumption would not
hold, and a condition of heteroskedasticity would prevail. The recom-
mended solution for this condition is a weighted least squares procedure,
(Diagnosis of heteroskedasticity is discussed further when the analysis
of residuals is considered.)

The assumption of no autocorrelation means that the error corre-
sponding to an observation is not correlated with any of the errors for
the other observations. When autocorrelation is present, the least squares
parameter estimates are still unbiased; however, the significance tests
and confidence intervals are invalid. Commonly, significance tests will
be much more likely to indicate that a coefficient is statistically significant,
when in fact it is not. Autocorrelation more frequently appears with
time-series variables (repeated observations on the same unit through time)
than with cross-sectional variables (unique observations on different
units at the same point in time, as with our Riverside study). With time-
series data, the no autocorrelation assumption requires that error for
an observation at an earlier time is not related to errors for observations
at a later time. If we conceive of the error term in the equation as, in part,
a summary of those explanatory variables that have been left out of the
regression model, then no autocorrelation implies that those forces in-
fluencing Y in, say, year 1, are independent of those forces influencing Y
in year 2.* This assumption, it should be obvious, is often untenable.
(The special problems of time-series analysis have generated an extensive
literature; for a good introduction, see Ostrom, 1978.)
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The next assumption, that the independent variable is uncorrelated
with the error term, can be difficult to meet in nonexperimental research.
Typically, we cannot freely set the values of X like an experimenter would,
but rather must merely observe values of X as they present themselves in
society. If this observed X variable is related to the error term, then the
least squares parameter estimates will be biased. The simplest way to test
for this violation is to evaluate the error term as a collection of excluded
explanatory variables, each of which might be correlated with X. Thus,
in the Riverside case, the error term would include the determinants of
income other than education, such as sex of the respondent. If the ex-
planatory variable of education is correlated with the explanatory variable
of sex, but this latter variable is excluded from the equation, then the
slope estimate for the education variable in the bivariate regression will
be biased. This b will be too large, because the education variable is allowed
to account for some income variation that is actually the product of sex
differences. The obvious remedy, which we come to employ, is the incor-
poration of the missing explanatory variables into the model. (If, for some
reason, an explanatory variable cannot be so incorporated, then we must
trust the assumption that, as part of the error term, it is uncorrelated
with the independent variable actually in the model.)

The last assumption is that the error term is normally distributed. Since
the distributions of Y; and ¢ are the same (only their means are different)},
our discussion will be facilitated by simply considering the distribution
of Y. The frequency distribution of a variable that conforms to a normal
curve has a symmetric bell-shape, with 95% of the observations falling
within two standard deviations, plus or minus, of the mean. With regard
to the Riverside example, the unique observations on the income variable
(Y:) could be graphed onto a frequency polygon to allow a visual inspec-
tion for normality, Or, for a quick preliminary check, we could count
the number of observations above and below the mean, expecting about
half in either direction. (In fact, there are 16 incomes above and 16 incomes
below the mean of $13,866, which suggests a normal distribution.) A more
formal measure, which takes into account all the information in the
frequency distribution, is the skewness statistic, based on the following
formula;

yi_y

Sy

n

skewness =
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If the distribution is normal, then skewness = 0. For our income variable,
skewness measures only —.02, indicating that the distribution is virtually
normal.

There is some disagreement in the statistical literature over how serious
the violations of the regressions assumptions actually are. At one extreme,
researchers argue that regression analysis is “robust,” that is, the param-
eter estimates are not meaningfully influenced by violations of the assump-
tions. This “robust” perspective on regression is employed in Kerlinger
and Pedhazar {1973). At the other extreme, some feel that violations of
the assumptions can render the regression results almost useless. Bibby’s
(1977) work provides an example of this “fragile” view of regression
analysis. Clearly, some of the assumptions are more robust than others.
The normality assumption, for instance, can be ignored when the sample
size is large enough, for then the central-limit theorem can be invoked.
(The central-limit theorem indicates that the distribution of 2 sum of
independent variables, which we can conceive of the error term as repre-
senting, approaches normality as sample size increases, irrespective of
the nature of the distributions in the population.) By way of contrast,
the presence of specification error, such as the exclusion of a relevant
variable, creates rather serious estimation probiems which can be relieved
only by introduction of the omitted variable into the model. Those who
wish to gain a fuller understanding of this controversy over assumptions
should consult, in addition to the efforts just cited, the excellent paper by
Bohrnstedt and Carter (1971). More advanced treatments of the regression
assumptions are available in econometrics texts; listing them in order of
increasing difficulty, I would recommend Kelejian and Qates (1974),
Pindyck and Rubinfeld (1976}, and Kmenta (19713,

Confidence Intervals and Significance Tests

Because social science data invariably consist of samples, we worry
whether our regression coefficients actually have values of zero in the
population. Specifically, is the slope (or the intercept) estimate signifi-
cantly different from zero? (Of course, we could test whether the parameter
estimate was significantly different from some number other than zero;
however, we generally do not know enough to propose such a specific
value.) Formally, we face two basic hypotheses: the nulland an alternative.
The null hypothesis states that X is not associated with Y; therefore, the
slope, B, is zero in the population. An alternative hypothesis states that
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X is associated with Y; therefore, the slope is not zero in the population.
In summary, we have

Ho: 8 = 0 (null hypothesis)
Hi: B8 # 0 (alternative hypothesis).

To test these hypotheses, an interval can be constructed around the slope
estimate, b. The most widely used is a two-tailed, 95% confidence interval:
(bt 2, 9955
If the value of zero does nor fall within this interval, we reject the null
hypothesis and accept the alternative hypothesis, with 959 confidence.
Put another way, we could conclude that the slope estimate, b, is signifi-
cantly different from zero, at the .05 level. (The level of staristical signifi-
cance associated with a particular confidence interval can be determined
simply by subtracting the confidence level from unity, for example,

1-.95=.05)

In order to apply this confidence interval, we must understand the
terms of the formula. These are easy enough. The term s, is an estimate
of the standard deviation of the slope estimate, b, and is commonly referred
to as the standard error. 1t is a useful measure of the dispersion of our
slope estimate. The formula for this standard error is,

Y -2 (- 2)
(X - %)? '

Statistical computing packages such as SPSS routinely print out the
standard errors when estimating a regression equation.

Because s, s an estimate {we seldom actually know the standard devia-
tion of the slope estimate), it is technically incorrect to use the normal
curve to construct a confidence interval for 8. However, we can utilize
the t distribution with (n-2) degrees of freedom. (The t distribution is
quite similar to the normal distribution, especially as n becomes large, say
greater than 30.) Almost every statistics text provides a table for the t
distribution.

The last component in the confidence interval formula is the subscript,
“.975.” This merely indicates that we are employing a 95% confidence
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interval, but with two-tails. A two-tailed test means that the hypothesis
about the affect of X on Y is nondirectional; for example, the above
alternative hypothesis, Hy, is sustained if b is either significantly negative
or significantly positive.

Suppose we now constructa two-tailed, 95% confidence interval around
the regression coefficients in our Riverside study. We have,

¥ = 5078 + 132X
(1498) (118)

where the figures in parentheses are the standard errors of the parameter
estimates. Given the sample size is 32,

ta_2.975 = 132.2,.975 ™ ta0..975 = 204
according to the t table, Therefore, the two-tailed, 95% confidence interval
for B is

(D41, . gos%) = 732+ 2,04 (118) = (732 £ 241).

The probability is .95 that the value of the population slope, 8, is between
$491 and $973. Since the value of zero does not fall within the interval,
we reject the null hypothesis. We conclude that the slope estimate, b, is
significantly different from zero, at the .05 level.

In the same fashion, we can construct a confidence interval for the
intercept, a. Continuing the Riverside example, '

(a1, _y. g755,) = 5078 £ 2.04(1498) = (5078  3056).

Clearly, the two-tailed, 95% confidence band for the intercept does not
contain zero. We reject the null hypothesis and declare that the intercept
estimate, a, is statistically significant at the .05 level. Graphically, this
means we reject the possibility that the regression line cuts the origin.
Besides providing significance tests, confidence intervals also allow
us to present our parameter estimates as a range. In a bivariate regression
equation, b is a point estimate; that is, it is a specific value. The confidence
band, in contrast, gives us an interval estimate, indicating that the slope
in the population, §, lies within a range of values. We may well choose to
stress the interval estimate over the point estimate. For example, in our
Riverside study the point estimate of 8 is $732. This is our best guess, but
in reporting the results we might prefer to say merely that a year increase
in education is associated with an increase of “more or less $732" a year
in income. Estimating a confidence interval permits us to formalize this
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caution; we could assert, with 95% certainty, that & one-year increase in
education is associated with an income increase of from 3491 to $973.

In the Riverside investigation, we have rejected, with 95% confidence,
the null hypothesis of no relationship between income and education,
Still, we know that there is a 5% chance we are wrong. If, in fact, the null
hypothesis is correct, but we reject it, we commit a Type T error. In an
effort to avoid Type 1 error, we could employ a 99% confidence interval,
which broadens the acceptance region for the null hypothesis. The formula
for a two-tailed, 999 confidence interval for 8 is as follows:

(b1, 5 go55,)

Applying the formula to the Riverside example,

732+ 2.75 (118) = (732 = 324).

These results provide some evidence that we have not committed a Type 1
error. This broader confidence interval does not contain the value of zero.
We continue to reject the null hypothesis, but with greater confidence.
Further, we can say that the slope estimate, b, is statistically significant
at the .01 level. (This effort to prevent Type I error involves a trade-off,
for the risk of Type Il error, accepting the null hypothesis when it is false,
is inevitably increased. Type II error is discussed below.)

The One-Tailed Test

Thus far, we have concentrated on a two-tailed test of the form,

Ho: 8= 0
Hi: 8 #0.

Occasionally, though, our acquaintance with the phenomena under
study suggests the sign of the slope. In such a ¢ircumstance, a one-tailed
test might be more reasonable. Taking the Riverside case, we would not
expect the sign of the slope to be negative, for that would mean additional
education actually decreased income. Therefore, a more realistic set of
hypotheses here might be,

HQZ,B:O
Hy: B> 0.
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Applying a one-tailed, 95% confidence interval yields,
B> (b—t,_,. g58,) =732~ 1.70 (118) =(732 - 201) = 531.

The lower boundary of the interval is above zero. Therefore, we reject
the null hypothesis and conclude the slope is positive, with 93% confidence.

Once the level of confidence is fixed, it is “easier” to find statistical
significance with a one-tailed test, as opposed to a two-tailed test. (The
two-tailed confidence interval is more likely to capture zero. For instance,
the lower bounds in the Riverside case for the two-tailed and one-tailed
tests, respectively, are $491 and $531.) This makes intuitive sense, for it
takes into account the researcher’s prior knowledge, which may rule out
one of the tails from consideration.

Significance Testing: A Rule of Thumb
Recall the formula for the two-tailed, 95% confidence interval for
(b tr\~~i2;.97581:\)'

if this confidence interval does not contain zero, we conclude that b is sig-
nificant at the .05 level. We see that this confidence interval will not contain
zero if, when b is positive,

(b —t, 2, 975%) = O
or, when b is negative,

(b+ tn-—Z;.97S'Sb) <0.
These requirements may be restated as,

bls, > t, 4. g75. When b is positive,
or,

bfsb < th_2:.975" when b is negative.
In brief, these requirements can be written,

! b/sb! > th_2..975°

which says that when the absolute value of the parameter estimate, b, divided
by its standard error, s, surpasses the t distribution value, t; . 975, We re-
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ject the null hypothesis. Thus, a significance test at the .05 level, two-tailed,
can be administered by examining this ratio. The test is simplified further
when one abserves that, for almost any sample size, the value in the ¢ distri-
bution approximates 2. For example, if the sample size is only 20, then
120-2;.975 = tyg..975 = 2.10. In contrast, if the sample is of infinite size,
too; 975 = 1.96. This narrow range of values given by the t distribution leads
to the following rule of thumb. I,

[ bfs,| > 2,

then the parameter estimate, b, is significant at the .05 level, two-tailed.

This ¢t ratio, as it is called, is routinely printed in the regression component
of several computer data analysis programs. Otherwise, it is easily calculated
by dividing b by s,. The t ratio provides an efficient means of significance
testing, and researchers frequently employ it. Of course, whenever more pre-
cision is wanted, the t table can always be consuited. Below is the bivariate
regression model from our Riverside example, with the t ratios appearing in
parentheses under the parameter estimates:

¢ = 5078 + 732X
(3.39) (6.23).

A quick glance at the t ratios reveals they exceed 2; we immediately conclude
that both a and b are statistically significant at the .03 level.

Reasons Why a Parameter Estimate
May Not Be Significant

There are many reasons why a parameter estimate may be found not
significant. Let us assume, to narrow the field somewhat, that our data
compose a probability sample and that the variables are correctly mea-
sured. Then, if b turns out not to be significant, the most obvious reason
is that X is not a cause of Y. However, suppose we doubt this straight-
forward conclusion. The following is a partial list of reasons why we might
fail to uncover statistical significance, even though X is related to Y in fact:

{1} inadequate sample size
(2) Type U error

(3) specification error

{4} restricted variance in X.
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Below, these four possibilities are evaluated in order. (A fifth possibility
is high multicollinearity, which we will consider in our discussion of
multiple regression.)

As sample size increases, a given coefficient is more likely to be found
significant. For insance, the b value in the bivariate regression of the
Riverside example would not be significant {.05) if based on only five
cases, but is significant with n = 32. This suggests it may be worthwhile
for a researcher to gather more observations, for it will be easier to detect
a relationship between X and Y in the population, if one is present. In
fact, with a very large sample, statistical significance can be uncovered
even if b is substantively quite small. {(For very large samples, such as
election surveys of 1000 or more, significance may actually be “too easy”
to find, since tiny coefficients can be statistically significant. In this situ-
ation, the analyst might prefer to rely primarily on a substantive judgment
of the importance of the coefficient.)

Let us suppose that sample size is fixed, and turn to the problem of
choosing a significance level, as it relates to Type II error. In principle,
we could set the significance test at any level between 0 and 1. In practice,
however, most social scientists employ the .05 or .01 levels. To avoid the
charges of arbitrariness or bias, we normally select one of these conven-
tional standards before analysis begins. For instance, suppose prior to
our investigation we decide to employ the .01 significance level. Upon
analysis, we find b is not significant at this .01 level. But, we observe that
it is significant at the less demanding level of .05. We might be loath to
accept the null hypothesis as dictated by the .01 test, especially since theory
and prior research indicate that X does influence Y. Technically, we worry
that we are committing a Type II error, accepting the null when it is false.
In the end, we may prefer to accept the results of the .05 test. (In this
particular case, given the strength of theory and previous research, perhaps
we should have initially set the significance test at the less demanding
.05 level.)

Aside from Type II error, b may not appear significant because the
equation misspecifies the relationship between X and Y. Perhaps the
relationship follows a curve, rather than a straight line, as assumed by
the regression model. First, this curvilinearity should be detectable in the
scatterplot. To establish the statistical significance of the relationship in
the face of this curvilinearity, regression analysis might still be applied,
but the variables would have to be properly transformed. (We pursue
an example of such a transformation of the end of this chapter.)
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Finally, a parameter estimate may not be found significant because
the variance in X is restricted. Look again at the formula for the standard
error of b, sy.

(Y - 1 [(n~2)
(X - X)?

We can see that as the dispersion of X about its mean decreases, the vatue
of the denominator decreases, thereby increasing the standard error
of b. Other things being equal, a larger standard error makes statistical
significance more difficult to achieve, as the t ratio formula makes clear.
The implication is that b may not be significant simply because there is
too little variation in X. (The degree of variation in X is easily checked
by evaluating its standard deviation.) In siuch a circumstance, the re-
searcher may seek to gather more extreme observations on X, before

making any firm conclusions about whether it is significantly related
to Y.

The Prediction Error for Y

In regression analysis, the difference between the observed and the
estimated value of the dependent variable, Y; - Y., equals the prediction
error for that case. The variation of all these prediction errors around
the regression line can be estimated as follows:

This s. is called the standard error of estimate of Y, that is, the estimated
standard deviation of the actual Y from the predicted Y. Hence, the
standard error of estimate of Y provides a sort of average error in pre-
dicting Y. Further, it can be used to construct a confidence interval for Y,
at a given X value. Utilizing the knowledge that the value given by the t
distribution approximates 2 for a sample of almost any size, we produce
the following 95% confidence interval for Y:

(f’ + 2s.).
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Let us take an example. In the Riverside study, we would predict some-
one with 10 years of education had an income of

¥ = 5078 + 732(10) = 12,398.

How accurate is this prediction? For X = 10, we have this 95% confidence
interval (s. = 2835):

12,398 + 2(2855) = (12,398 & 5710).

According to this confidence interval, there is a .95 probability that a
city employee with 10 years of education has an annual income between
%6688 and $18,108, This is not a very narrow range of values. (The high
extreme is almost three times the low extreme.) We conclude that our
bivariate regression model cannot predict Y very accurately, for a specific
value of X. Such a result is not too surprising. Recall that, according to
the R? = .56, the model explains just over one-half the variationin Y. Our
RZ would need to be much greater, in order to reduce our prediction error
substantially,

A last point merits mention. The above confidence interval, which
utilizes s, provides a kind of “average” confidence interval. In reality, as
the value of X departs from the mean, the actual confidence interval
around Y tends to get larger. Thus, at more extreme values of X, the
above confidence interval will be somewhat narrower than it should be.
‘The formula for constructing this more precise confidence interval is
readily available (see Kelejian and Oates, 1974, pp. 111-116).

Analysis of Residuals

The prediction errors from a regression model, Yi - {ﬁ, are also called
residuals. Analysis of these residuals can help us detect the violation of
certain of the regression assumptions. In a visual inspection of the resid-
uvals, we hope to observe a healthy pattern similar to that in Figure 8a;
that is, the points appear scattered randomly about in a steady band of
equal width above and below the regression line. Unfortunately, however,
we might discover a more problematic pattern resembling one of those
in Figures 8b to 8e. Below, we consider each of these troublesome pat-
terns, in turn,

We begin with the most easily detectable problem, that of outliers.
in Figure 8b, there are two observations with extremely large residuals,
placing them quite far from the regression line. At least with regard to
these observations, the linear model provides a very poor fit. By looking
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Figures 8a-e; Some Possible Patterns for Residuals

at a concrete example, we can explore consequences of outliers in more
detail. In our Riverside study, suppose we had been careless in coding
the data and recorded the incomes of Respondents 29 and 30 as $30,018
and $36,526, respectively (instead of the correct values, $20,018 and
$16,526). The scatterplot, adjusted to include these erroneous values,
would now look like Figure 9. By fitting a regression line to this revised
plot, we see that Respondents 29 and 30 have become outliers, with
residuals of 10,112 and 15,599, respectively. Further, examining the
residuals generally, we note that they are out of balance around the line,
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that is, there are 20 negative residuals, but only 12 positive residuals. The
estimated regression equation and the accompanying statistics are as
follows:

¥ = 2557 + 1021X (Outlier Data-Set)
(2438) (191

R? = 49 n=32 s, = 4647,

where the figures in parentheses are the standard errors of the parameter
estimates; R? = coefficient of determination, n = sample size; and s, =
standard error of estimate of Y.

What did the presence of these outliers do to our findings? We get a
good idea by comparing these “outlier data-set” estimates to our earlier
“original data-set” estimates, which we repeat below:

Y = 5078 + 732X (Original Data-Set)
(1498) (118)
R* = 56 n=32 s, = 2855,

where the terms are defined as above. First, note that, in an effort to
accommodate the outliers, the slope is considerably elevated in the “out-
lier” equation. However, we would have less confidence in the accuracy
of this outlier slope estimate, according to a comparison of the standard
errors for b. The reduced R? summarizes the fact that the outlier model
generally fits the data less well, The difficulties for prediction caused by
the existence of the outliers is dramatically indicated by comparing the
standard errors of estimate for Y, which suggests that prediction error is
over 1.5 times as great under the outlier equation.

These several statistics show that the presence of outliers clearly
weakens our explanation of Y. How can we adjust for outliers, in general?
(We refer, of course, to actual outliers, not outliers that could be corrected
by more careful coding, as in our pedagogic example.) There are at least
four possibilities:

{1} Exclude the outlying observations.

(2) Report two equations, one with the outliers included and one
without.

{3) Transform the variable.

(4) Gather more observations.
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Figure 91 The Fitted Regression Line in the Presence of Qutliers

There are pros and cons attached to each of these possibilities, Adjust-
ment 1 simply eliminates the problem by eliminating the outliers. The
principle drawbacks are the reduction in sample size and the loss of
information it entails. Adjustment 2 preserves the information that would
be lost in Adjustment 1; however, it may be cumbersome to have to con-
sider two empirically different versions of ostensibly the same model.
Adjustment 3 uses only one equation, maintains the sample size, and can
pull the outliers closer to the regression line. However, the results may be
robbed of the straightforward interpretation possible when the variable
was measured in the original units. Adjustment 4 may reveal that the
outliers are not atypical cases, but in fact fit into a more general, perhaps
nonlinear, pattern. An obvious limitation is that usually, in nonexperi-
mental social science research, it is impossible to gather more observations,
None of these adjustments is appropriate for every situation. Rather, in
deciding on how to handle an outlier problem, we must consider our
research question and the appearance of the particular scatterpiot.
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Figures 8c to 8e represent more “gbnormal” residual plots. While
outliers may hint at curvilinearity, it is clearly present in Figure 8c. Since
regression assumes linearity, our estimators in this case are not optimal.
Obvicusly, a unit change in X does not elicit the same response (i.e., b)
in Y along the spectrum of X values. Nonlinearity can be dealt with in
several ways. For example, a polynomial term might be added to the
equation, or a logarithmic transformation applied to one of the variables.
Of course, the approach chosen depends partly upon the shape of the
particular scatterplot.

Figure 8d indicates a violation of the regression assumption of homo-
skedasticity. We observe that the error variance is not constant, but rather
depends on the value of X; specifically, as X increases, the variation of
the residuals increases. This condition of heteroskedasticity may be
remedied through weighted least squares, which involves a transformation
to restore the constancy of the error variance.

Figure 8¢ shows a linear relationship between the residuals and the
predicted Y value; specifically, as Y increases, the residuals tend to move
from negative to positive in sign. This implies specification error in the
form of an exclusion of a relevant variable. For instance, the observations
with very positive residuals may have something in common which places
them higher than expected on Y. If this common factor is identified, it
indicates a second independent variable for the equation,

With these above three figures (8c, 8d, and 8¢) in mind, perhaps we
should analyze the residuals of the original Riverside study. (We have
corrected the coding error which produced the outliers.) Of course, these
residuals could be examined simply by looking at the scatter around the
regression line, as we have done thus far. Sometimes, however, we want
to highlight them in a special plot. Figure 10 shows such a plot, where
the residual values are indicated on the vertical axis, the predicted Y
values are indicated on the horizontal axis. This residual plot fails to
suggest any of the patterns in Figures 8¢ to 8e. The residuals neither
follow a curve, not do they take the shape of the heteroskedastic “fan.”
Also, if there is specification error, it cannot be detected through analysis
of these residuals. In sum, the pattern of residuals in Figure 10 appears
free of abnormalities, forming a straight, broad band which the horizontal
line cuts in half. This visual impression receives quantitative confirmation.
A simple sign count reveals a virtually even balance around the line (17
negative residuals, 15 positive residuals). Further, ail the residuals are
scattered within a band that extends from the line plus or minus two
standard errors of estimate of Y.
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The Effect of Safety Enforcement on Coal Mining
Fatalities: A Bivariate Regression Example

It is time to apply what we have learned to some data from the real
world. A current public policy controversy concerns whether the federal
government can regulate safety in the workplace. Before the 1970 passage
of the Occupational Safety and Health Act, federal government involve-
ment in occupational safety was limited to coal mining. A study of this
intervention, which extends over 35 years, may shed light on the act’s
prospects for success. Our specific research question is, “Has federal
safety enforcement reduced the rate of fatalities in the coal mines?” From
various issues of the Minerals Yearbook, annual observations, 1932-1976,
can be gathered on the U.S. coal mining fatality rate (measured as number
of deaths per million hours worked). Also available, from The Budget of
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the United States Government, is the annual Bureau of Mines (currently
the Mine Safety and Health Administration) health and safety budget,
which pays for the federal enforcement activities, such as inspections and
rescues. We use this health and safety budget, converted to constant
dollars {1967 = 100}, as a global measure of federal enforcement activity.
A bivariate regression of the fatality rate, Y, on the safety budget X,
yields

¥ = 126 — 0000125X
(36.1) (=8.5)

R? = 63 n =45 s = .19,

where Y = annual coal mining fatality rate (measured as deaths per million
hours worked), X = annual federal coal mining safety budget (measured
in thousands of constant dollars, 1967 = 100); the values in parentheses
are the t ratios; R? = coefficient of determination; n = sample size; s, =
standard error of estimate for Y.

Safety expenditures are significantly related to the fatality rate, as a
glance at the t ratio for b shows. Further, according to this slope estimate,
a budgetary increase of $1 million is associated with a decrease in the
fatality rate of about .01. (Some idea of the meaning of this change comes
from noting that the range of the fatality rate variable is from 4 to 1.7.)
Moreover, the R’ indicates that fluctuations in the safety budget are
responsible for over one-half the variation in the fatality rate. In sum,
federal safety enforcement, as measured by expenditures for that purpose,
seems an important influence on the coal mining fatality rate.

These estimates, although they appear pleasing, should not be accepted
too readily, for we failed to look at the scatterplot. Upon inspection we
discover that the linearity assumed by our regression equation is incorrect.
Rather, the relationship between X and Y tends to follow a curve, as
sketched in Figure 11, Fortunately, we are often able to transform the
variables so as to make a relationship linear. The shape of this curve
strongly suggests a logarithmic transformation is the most appropriate.
Specifically, a logarithmic transformation of X will tend to “straighten
out” the scatter, thus rendering the data more compatible with the linear
regression assumption. Further, this transformation incorporates the
knowledge gleaned from Figure 11, which is that, contrary to the inter-
pretation from the above slope estimate, each additional dollar spent
decreases the fatality rate less and less. (For an excellent discussion of
logarithmic transformations, see Tufte, 1974, pp. 108-131)
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Figure 12 shows the new scatterplot, after X has undergone a “natural”
logarithmic transformation, ¢n X. Reestimating the equation, but with
this transformed X, vields,

Y=1325 - 247X
(203) (~13.6)

R? = 81 n =45 s = .14

where the terms are defined as above.

Our explanation of the fatality rate is considerably improved. This
equation accounts for over two-thirds of the variation in Y, as the R’
reveals. Further, the increment in R? from the earlier equation is large
(.81 - .63 = .18), demonstrating that the curvilinearity in the relationship
of safety expenditures to the fatality rate is substantial. Incorporating
this curvilinearity into our model markedly enhances the predictive
power of the model. In the earlier equation, when Y is predicted for a
given budget, the average error is .19. This standard error of estimate for
Y is reduced to .14 in our revised model. By careful examination of the
original scatterplot and application of the appropriate transformation,
we noticeably bettered what, at first blush, appeared to be an adequate
accounting of the association between coal mining fatalities and federal
safety expenditures. Of course, although safety expenditures represent
an important determinant of the fatality rate, it is not the only one, as we
will discover in the next chapter.

3. MULTIPLE REGRESSION

With multiple regression, we can incorporate more than one inde-
pendent variable into an equation. This is useful in two ways, First, it
almost inevitably offers a fuller explanation of the dependent variable,
since few phenomena are products of a single cause. Second, the effect of
a particular independent variable is made more certain, for the possibility
of distorting influences from the other independent variables is removed.
The procedure is a straightforward extension of bivariate regression.
Parameter estimation and interpretation follow the same principles. Like-
wise, the significance test and the R” are parallel. Further, the bivariate
regression assumptions necessary for BLUE are carried over to the multi-
variate case. The technique of multiple regression has great range, and
its mastery will enable the researcher to analyze virtually any set of quanti-
tative data.
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The General Equation

In the general multiple regression equation, the dependent variable is
seen as a linear function of more than one independent variable,

Yza+bhXi+b:Xot baXat ... + beXy t €,

where the subscript identifies the independent variables. The elementary
three-variable case, which we shall be using below, is written,

Y o=as+ X+ heXatoe,

and suggests that Y is determined by X, and Xz, plus an error term.
To estimate the parameters we again employ the least squares principle,
minimizing the sum of the squares of the prediction errors (SSE):

o2
SSE = (Y - Y).
For the three-variable model, this least squares equation is,
V= a0+ DX + b Xa

The least squares combination of values for the coefficients {ao, by, b2)
yields less prediction error than other possible combinations of values.
Hence, the least squares equation fits the set of observations better than
any other linear equation. However, it can no longer be represented
graphically with a simple straight line fitted to a two-dimensional scatter-
plot. Rather, we must imagine fitting a plane to a three-dimensional
scatter of points. The location of this plane, of course, is dictated by the
values of ao, by, and by, which are given by the calculus. For most of us,
it is impossible to visualize the fitting of equations with more than three
variables. Indeed, for the general case, with k independent variables, it
requires conceiving of adjusting a k-dimensional hyperplane to a (k + 1)-
dimensional scatter.

For purposes of illustration, let us look at a simple three-variable
model from our Riverside study. On the basis of our earlier work, we
believe income is related to education. But we know that education is not
the only factor influencing income. Another factor is undoubtedly seni-
ority. In most occupations, the longer one is on the job, the more money
one makes. This seems likely to be so in Riverside city government.
Therefore, our explanation for income differences should be improved if
we revise our bivariate regression model to this multiple regression model:

Y:a()'*'blxi+b2x2+e~
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where Y = income (in dollars), X, = education (in years), X, = seniority
(in years), e = error. The least squares estimates for the parameters are
as follows:

¥ = 5666 + 432X, + 281X,

Interpreting the Parameter Estimates

The interpretation of the intercept, which merely extends the bivariate
case, need not detain us: ag = the average value of Y when each independent
variable equals zero. The interpretation of the slope, however, requires
more attention: by = the average change in Y associated with a unit change
in X, when the other independent variables are held constant. By this
means of control, we are able to separate out the effect of X, itself, free of
any distorting influences from the other independent variables. Such a
slope is called a partial slope, or partial regression coefficient. Inthe above
Riverside example, partial slope b, estimates that a one-year increase
in seniority is associated with an average income rise of $281, even assum-
ing the employee’s amount of education remains constant, In other words,
a city worker can expect this annual salary increment, independent of any
personal effort at educational improvement. Nevertheless, according to
b1, acquiring an additional year of schooling would add to an employee’s
income, regardless of the years of seniority accumulated. That is, an extra
year of education will augment income an average of $432, beyond the
benefits that come from seniority.

To appreciate fully the interpretation of the partial slope, one must
grasp how multiple regress:on “holds constant” the other independent
variables. First, it involves statistical control, rather than experimental
control. For instance, in our Riverside study, if we were able to exercise
experimental control, we might hold everyone’s education at a constant
value, say 10 years, and then record the effect on income of assigning
respondents different amounts of seniority. To assess the effect of educa-
tion on income, a similar experiment could be carried out. If such manipu-
lation were possible, we could analyze the effects of seniority and edu-
cation, respectively, by running two separate bivariate regressions, one on
each experiment. However, since such experimental control is out of the
question, we have to rely on the statistical control multiple regression
provides. We can show how this statistical control operates to separate
the effect of one independent variable from the others by examining the
formula for a partial slope.




T

Wi,

50

We confine ourselves to the following three-variable model, the results
of which are generalizable:

Yea+ X+ X te

Let us explicate the by estimation. Assuming ri2 # 0, each independent
variable can be accounted for, at least in part, by the other independent
variables. That is, for example, X; can be written asa linear function of X,

Xi=¢ t CXa + u.

Supposing X is not perfectly predicted by X», there is error, u. Hence, the
observed X, can be expressed as the predicted X;, plus error:

)
Xy = X) +u,

"
where X, = ¢ + & Xs. The error, u, is the portion of Xi which the other
independent variable, X,, cannot explain,

l}ﬁX;—)A(L

This component, u, thus represents a part of X\ which is completely
separate from Xa.

By the same steps, we can also isolate the portion of Y which is linearly
independent of X

Y=d +dyXo+ v
:(d1+d2X2)+V
Y‘—“';f+v.

The error, v, is that portion of ¥ which cannot be accounted for by Xs,

A

v=Y-Y.

This component, v, then, is that part of Y which is unrelated to X.
These two error components, u and v, are joined in the following
formula for by

5 () _ D(X, - X (Y =)

b, = n
T u? 2(X, -X)

1
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In words, b is determined by X\ and Y values that have been freed of any
linear influence from X,. In this way, the effect of X, is separated from
the effect of X,. The formula, generally applicable for any partial slope,
should be familiar, for we saw a special version of it in the bivariate case,
where

X -X)(Y-9)
X -%)P

b=

While the statistical control of multiple regression is weaker than
experimental control, it still has great value. The careful introduction of
additional variables into an equation permits greater confidence in our
findings. For instance, the bivariate regression model of the Riverside
study suggested that education is a determinant of income. However,
this conclusion is open to challenge. That apparent bivariate relationship
could be spurious, a product of the common influence of another variable
on education and income. For example, an antagonist might argue that
the observed bivariate relationship is actually caused by senority, for
those with more years on the job are those with more education, as well
as higher pay. An implication is that if seniority were “held constant,”
education would be exposed as having no effect on income. Multiple
regression permits us to test this hypothesis of spuriousness. From the
above least squares estimates, we discovered that education still has an
apparent effect, even after taking the influence of seniority into account.
Hence, through actually bringing this third variable into the equation,
we are able to rule out an hypothesis of spuriousness, and thereby strength-
en our belief that education affects income.

Confidence Intervals and Significance Tests

The procedure for confidence intervals and significance tests carries
over from the bivariate case. Suppose we wish to know whether the partial
slope estimate, by, from our three-variable equation for the Riverside
study, is significantly different from zero. Again, we confront the null
hypothesis, which says there is no relationship in the population, and
the alternative hypothesis, which says there is a relationship in the popu-
lation. Let us construct a two-tailed, 95% confidence interval around this
partial slope estimate, in order to test these hypotheses:

(By £, 3, 9755%)
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Note that the only difference between this formula and the bivariate
formula is the number of degrees of freedom. Here, we have oneless degree
of freedom, (n-3) instead of (n-2), because we have one more independent
variable. In general, the degrees of freedom of the t variable equal (n—k-1),
where n = sample size and k = number of independent variables. Applying
the formula,

(432 % tyg g75,) = 432 % 2.045 (144) = (432 £ 294),

The probability is .95 that the value of the partial slope in the population
is between $138 and $726. Because the value of zero is not captured within
this band, we reject the null hypothesis. We state that the partial slope
estimate, by, is significantly different from zero, at the .05 level.

A second approach to the significance testing of by would be examina-
tion of the t ratio,

b fs, =432/144=301.
1

We ohserve that the value of this t ratio exceeds the t distribution value,
ta-3; 975. That is,

3.01 > 2.045.

Therefore, we conclude that by is statistically significant at the .05 level.
The most efficient means of significance testing is to use the rule of
thumb, which claims statistical significance at the .05 level, two-tailed,
for any coefficient whose t ratio exceeds 2 in absolute value. Below is the
three-variable Riverside equation, with the t ratios in parentheses:

Y = 5666 + 432X, + 281X,.
(422) (301) (3.04)

An examination of these t ratios, with this rule of thumbinmind, instantly
reveals that all the parameter estimates of the model (ao,bi,ba) are sig-
nificant at the .05 level

The R?

To assess 2the goodness of fit of 2 multiple regression equation, we
employ the R*, now referred to as the coefficient of multiple determination.
Once again,

A .
R? = (Y - Y)2 _ regression (explained) sum of squares

(Y — ?)2 total sum of squares
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The R? for a multiple regression equation indicates the proportion of
variation in Y “explained” by all the independent variables, In the above
three-variable Riverside model, R* = .67, indicating that education and
seniority together account for 67% of the variance inincome. This multiple
regression model clearly provides a more powerful explanation for income
differences than the bivariate regression model, where R* = .56,

Obviously, it is desirable to have a high R?, for it implies a more com-
plete explanation of the phenomenon under study. Nevertheless, if a higher
R? were the only goal, then one could simply add independent variables
to the equation. That is, an additional independent variable cannot lower
the R®, and is virtually certain to increase it at least somewhat. In fact, if
independent variables are added until their number equals n-1, then
R’ = 1.0. This “perfect” explanation is of course nonsense, and amounts
to no more than a mathematical necessity, which occurs because the
degrees of freedom have been exhausted. In sum, rather than entering
variables primarily to enhance R’ the analyst must be guided by theo-
retical considerations in deciding which variables to include.

Predicting Y

A multiple regression equation is used for prediction as well as ex-
planation. Let us predict the income of a Riverside city employee who
has i0 years of education and has been on the job 5 years:

¥ = 5666 + 432X, + 281X,
= 5666 + 432(10) + 281(5)
= 5666 + 4320 + 1405
Y= 11,391,
In order to get some notion of the accuracy of this prediction, we can

construct a confidence interval around it, utilizing the standard error of
estimate of Y, s,

(¥ £ 259 = ¥ + 2(2529) = 11,391 + 5058.

This confidence interval indicates there is a 95% chance that a municipal
employee with 10 years of education and 5 years of seniority will earn
between $6333 and $16449. While this prediction is more accurate than
that generated by the bivariate regression equation, it is still far from
precise.
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The model is even less useful for forecasting beyond its range of ex-
perience. Certainly, we could plug in any values for X, and X:and produce
a prediction for Y. However, the worth of the forecast diminishes as these
X, and X» values depart from the actual range of variable values in the
data. For instance, it would be risky to predict the income of a city worker
with two years of education and 35 years of seniority, for no one in the
data-set registered such extreme scores. Possibly, at such extreme values,
the linearity of the relationships would no longer exist. Then, any pre-
diction based on our linear model would be quite wide of the mark.

The Possibility of Interaction Effects

Thus far, we have assumed that effects are additive. Thatis, Y is deter-
mined, in part, by X plus Xo, not X, times X,. This additivity assumption
dominates applied regression analysis and is frequently justified. However,
it is not a necessary assumption. Let us explore an example.

We have mentioned the variable of sex of respondent as a candidate
for inclusion in the Riverside income equation. The question is, should
the sex variable enter additively or as an interaction. It might be argued
that sex is involved interactively with education. In general, an interaction
effect exists when the impact of one independent variable depends on the
value of another independent variable. Specifically, perhaps the effect of
education is dependent on the sex of the employee, with education yielding
a greater financial return for men.

Formally, this particular interaction model is as follows (we ignore the
seniority variable for the moment):

Q Zapt+t b Xyt bz(xixz) + e,

where Y = income (in dollars); Xi = education (in years); X, = sex of re-
spondent (0 = female, 1 = male); X:X; = an interaction variable created
by multiplying X, times X. The least squares estimates for this model are,

4= 5837 + 556X, + 202 (X;X) R =65,
(4.20) (444)  (2.70)

where the figures in parentheses are t ratios. These results indicate that
education, while increasing the income of both sexes, provides a greater
income increase for men. This becomes clearer when we separate out the
prediction equations for men and women.
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Prediction equation for women:

Y = a0 + by X, + 5:X:(0)
=ay + X,
Y = 5837 + 556X,

Prediction equation for men:

'.Y" Sap+ X, + XD
=gy + (b} + bz)X,
Y = 5837 + 758X..

We observe that, for men, the slope for the education variable is greater.
Further, this slope difference is statistically significant (see the t ratio
for by).

The rival, strictly additive, model, is,

Y=a+bhX +bhXte,

where the variables are defined as before. Estimating this model yields,

V= 4995 + 633X, + 2555X,  R®=.65,
(3.64) (554)  (2.60)

where the values in parentheses are t ratios. These estimates suggest that
education and sex have significant, independent effects on income.

The data are congruent with both the interaction model and the additive
model. The coefficients are all statistically significant, and the R? is the
same in both. Which model is correct? The answer must base itself on
theoretical considerations and prior research, since the empirical evidence
does not permit us to decide between them. The additive model seems
more in keeping with a “discrimination” theory of income determination;
that is, other things being equal, society pays women less solely because
they are women. The interaction model appears to square better with an
“individual failure” theory of income determination; that is, women are
paid less because they are less able to make education work to their ad-
vantage. On the basis of prior theorizing and research, ! favor the “dis-
crimination” interpretation and therefore choose to allow the sex variable
to enter the larger income equation additively. (A resolution of the two
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models might come from estimation of an equation which allows sex to
have additive and interactive effects:

Y 2ap+ X+ baXp + b3(X1X2) + e,

Unfortunately, the estimates from this model are made unreliable by severe
multicollinearity, a problem not uncommon with interaction models.
We consider multicollinearity at length below.)

A Four-Variable Model:
Overcoming Specification Error

Incorporating the sex variable additively into our model for income
differences in Riverside leads to the following equation:

Y=g+ b X+ Xy + haXs + e,

where Y = income (in dollars), X; = education (in years), X, = seniority
(in years), X» = sex (0 = female, | = male), ¢ = error. Theoretically, this four-
variable model is much more complete than the earlier two-variable model.
It asserts that income is a linear additive function of three factors: educa-
tion, seniority, and sex.

Estimating this multiple regression model with least squares yields,

¥ = 5526 + 385X, + 247X, + 2140X;
(444) (286) (284) (240)

R?=73 n=32 s,=234,

where the values in parentheses are the t ratios, R* = coefficient of multiple
determination, n = sample size, s. = standard error of estimate of Y.
These estimates tell us a good deal about what affects income in River-
side city government. The pay of a municipal employee is significantly
influenced by years of education, amount of seniority, and sex. (Each t
ratio exceeds 2, indicating statistical significance at the .05 level.} These
three factors largely determine income differences within this population.
In fact, almost three-quarters of the variation in income is explained by
these variables (R” = .73). The differences caused are not inconsequential.
For each vear of education, $385 is added to income, on the average. An
extra year of seniority contributes another $247. Male workers can expect
$2140 more than females workers, even if the women have the same
education and seniority. The cumulative impact of these variables can
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create sizable income disparities. For example, a male with a college
education and 10 years seniority would expect to make $16,296; in con-
trast, a female with a high school degree and just starting work could
only expect to earn $10,146.

Inclusion of relevant variables, that is, seniority and sex, beyond the
education variable, has markedly diminished specification error, helping
ensure that our estimates are BLU. (To refresh yourself on the meaning of
specification error, review the discussion of assumptions in Chapter 2.)
In particular, the estimate of the education coefficient, which equaled 732
in the bivariate model, has been sharply reduced. The comparable estimate
in this four-variable model, by = 385, indicates that the true impact of
education is something like one-half that estimated in the original bivariate
equation.

For certain models, it is fairly easy to detect the direction of bias resuit-
ing from the exclusion of a relevant variable. Suppose the real world is
congruent with this model;

Y=a+bhX +bX;te {correct model},

but we mistakenly estimate,

Y =ap+ by X, +e* (incorrect model),

where e* = (byX; + €). By excluding X: from our estimation, we have com-
mitted specification error. Assuming that X, and X, are correlated, as
they almost always are, the slope estimate, b;, will be biased. This bias is
inevitable, for the independent variable, X, and the error term, e*, are
correlated, thus violating an assumption necessary for regression to
yield desirable estimators. (We see that r e # 0, because Tz, 7 0, and X,
is a component of e*) The direction of the bias of b, in the estimated
model is determined by: (1) the sign of by and (2) the sign of the correlation,
t12. If by and 2 have the same sign, then the bias of by is positive; if not,
then the bias is negative,

It happens that the direction of bias in the somewhat more complicated
Riverside case accords with these rules. As noted, the bias of b; in the
bivariate equation of the Riverside study is positive, accepting the specifi-
cation and estimation of the four-variable model. The presence of this
positive bias follows the above guidelines: (I) the sign of b; (and bs) is
positive and (2) the sign of r;, (and r3) is positive; therefore, the bivariate
estimate of by must be biased upward. Part of the variance in Y that X, is
accounting for should be explained by X; and X, but these variables are
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not in the equation. Thus, some of the impact of Xz and X; on Y is erron-
eously assigned to Xi.

The formulation of rules for the detection of bias implies that it is
possible to predict the consequences of a given specification error. For
instance, the analyst is able to foresee the direction of bias coming from the
exclusion of a certain variable. With simpler models, such as those treated
here, such insight might be attainable. However, for models which include
several variables, and face several candidates for inclusion, the direction
of bias is not readily foreseeable. In this more complex situation, the
analyst is better served by immediate attention to proper specification of
the model.

The Multicollinearity Problem

For multiple regression to produce the “best linear unbiased estimates,”
it must meet the bivariate regression assumptions, plus one additional
assumption: the absence of perfect multicollinearity. That is, none of the
independent variables is perfectly correlated with another independent
variable or linear combination of other independent variables. For
example, with the following multiple regression model,

Y=aa+b;X1+bzX2+e,
perfect multicollinearity would exist i,
X2 = o + Xy,

for X: is a perfect linear function of X, (that is, R? = 1.0). When perfect
multicollinearity exists, it is impossible to arrive at a unique solution for
the least squares parameter estimates. Any effort to calculate the partial
regression coefficients, by computer or by hand, will fail. Thus, the
presence of perfect multicollinearity is immediately detectable. Further,
in practice, it is obviously quite unlikely to occur. However, high multi-
collinearity commonly perplexes the users of multiple regression.

With nonexperimental social science data, the independent variables
are virtually always intercorrelated, that is, multicollinear. When this
condition becomes extreme, serious estiration problems often arise. The
general difficulty is that parameter estimates become unreliable. The
magnitude of the partial slope estimate in the present sample may differ
considerably from its magnitude in the next sample. Hence, we have little
confidence that a particular slope estimate accurately reflects the impact
of X on Y in the population. Obviously, because of such imprecision, this
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partial slope estimate cannot be usefully compared to other partial slope
estimates in the equation, in order to arrive at a judgment of the relative
effects of the independent variables. Finalily, an estimated regression co-
efficient may be so unstable that it fails to achieve statistical significance,
even though X is actually associated with Y in the population.

High multicollinearity creates these estimation problems because it
produces large variances for the slope estimates and, consequently, large
standard errors. Recalling the formula for a confidence interval (95%,
two-tailed),

(bt _1,975%)
we recognize that a larger standard error, sy, will widen the range of values
that b might take on. Reviewing the formula for the t ratio,

b/Sb,

we observe that a larger s, makes it more difficult to achieve statistical
significance (e.g., more difficult to exceed the value of 2, which indicates
statistical significance at the .05 level, two-tailed).
We can see how large variances occur with high multicollinearity by
examining this variance formula,
. _2 _22
variance b, = S, su,f‘wi
where s2 is the variance of the error term in the multiple regression model,
and v? is the squared residual from the regression of the i independent
variable, X;, on the rest of the independent variables in the model. Hence,

Vi = X - )Ei.

If these other independent variables are highly predictive of X, then
Xi and X; will be very close in value, and so v will be small. Therefore,
the denominator in the above variance formula will be small, yielding a
large variance estimate for b;,

Of course, when analysts find a partial regression coefficient is statis-
tically insignificant, they cannot simply dismiss the result on grounds of
high multicollinearity. Before such a claim can be made, high multi-
collinearity must be demonstrated. Let us first look at common symptoms
of high multicollinearity, which may alert the researcher to the problem.
Then, we will proceed to a technique for diagnosis. One rather sure
symptom of high multicollinearity is a substantial R? for the equation,
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but statistically insignificant coefficients. A second, weaker, signal is
regression coefficients which change greatly in value when independent
variables are dropped or added to the equation. A third, still less sure,
set of symptoms involves suspicion about the magnitudes of the coeffi-
cients. A coefficient may be regarded as unexpectedly large (smnall), either
in itself, or relative to another coefficient in the equation. 1t may even be
so large (or small) as to be rejected as nonsensical. A fourth alert is 2
coefficient with the “wrong” sign. Obviously, this last symptom is feeble,
for knowledge of the “right” sign is often lacking.

The above symptoms might provide the watchful analyst hints of a
multicollinearity problem. However, by themselves, they cannot establish
that the problem exists. For diagnosis, we must look directly at the inter-
correlation of the independent variables. A frequent practice is to examine
the bivariate correlations among the independent variables, iooking for
coefficients of about 8, or larger. Then, if none is found, one goes on to
conclude that multicollinearity is not a problem. While suggestive, this
approach is unsatisfactory, for it fails to take into account the relationship
of an independent variable with all the other independent variables.
It is possible, for instance, to find no large bivariate correlations, although
one of the independent variables is a nearly perfect linear combination
of the remaining independent variables. This possibility points to the
preferred method of assessing multicollinearity: Regress each independent
variable on all the other independent variables. When any of the R’ from
these equations is near 1.0, there is high multicollinearity. In fact, the
fargest of these R2 serves as an indicator of theamount of multicollinearity
which exists.

Let us apply what we have learned about multicollinearity to the four-
variable Riverside model,

Y =ag+ biX + Xe + baXs T e,

where Y = income, X1 = education, X2 = seniority, Xi = $€X, € = €ITOL. The
estimates for this model, which we have already examined, reveal no
symptoms of a multicollinearity problem. That is, the coefficients are all
significant, and their signs and magnitudes are reasonable. Therefore,
we would anticipate that the above multicollinearity test would produce
R, far from unity. Regressing each independent variable on all the others
yields,

X = 702+ 42%; + 96X3 R = 49
K, = ~2.15+ 100X, + 1.68X3 R? = 49
Ry= 066+.022X; + 016X, R? = .14
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These Rfi show that these independent variables are intercorrelated
in the Riverside sample, as we would expect with data of this type. But,
we observe that the largest coefficient of muitiple determination, R* = .49,
lies a good distance from 1.0. Our conclusion is that multicollinearity is
not a problem for the partial slope estimates in the Riverside multiple
regression model.

The results do not always turn out so well. What can we do if high multj-
collinearity is detected? Unfortunately, none of the possible solutions is
wholly satisfactory. In general, we must make the best of a bad situation.
The standard prescription is to increase our information by enlarging the
sample. As noted in an earlier chapter, the bigger the sample size, the
greater the chance of finding statistical significance, other things being
equal. Realistically, however, the researcher is usually unable to increase
the sample. Also, multicollinearity may be severe enough that even a large
n will not provide much relief,

Assuming the sample size is fixed, other strategies have to be imple-
mented. One is to combine those independent variables that are highly
intercorrelated into a single indicator, If this approach makes conceptual
sense, then it can work well. Suppose, for example, a model which explains
political participation (Y) as a function of income (X)), race (X;), radio
listening (X3), television watching (X4}, and newspaper reading (Xs). On
the one hand, it seems sensible to combine the highly intercorrelated
variables (X1, Xa, X;5) into an index of media involvement. On the other
hand, it is not sensible to combine the income and race variables, even
if they are highly related.

Suppose our variables are “apples and oranges,” making it impractical
to combine them. In the face of high multicollinearity, we cannot reliably
separate the effects of the involved variables. Still, the equation may have
value if its use is restricted to prediction. That is, it might be employed
to predict Y for a given set of values on af/ the X's (e.g., when X; =2, X, =4,
... Xx = 3), but not to interpret the independent effect on Y of 2 change in
the value of a single X. Usually, this prediction strategy is uninteresting,
for the goal is generally explanation, in which we talk about the impact
of a particular X on Y,

A last technique for combatting multicollinearity is to discard the
offending variable(s). Let us explore an example. Suppose we specify the
following elementary multiple regression model,

Yoa+bX: +heXote Model .

Lamentably, however, we find that X, and X, are so highly related {r,, = .9),
that the least squares estimates are unable reliably to assess the effect of
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ecither. An alterpative is to drop one of the variables, say X, from the
equation, and simply estimate this model:

Yozap+ X +ef Model 1L

A major problem with this procedure, of course, is its willful commission
of specification error. Assuming Model 1 is the correct explanatory model,
we know the estimate for by in Model 11 will be biased. A revision which
makes this technique somewhat more acceptable is to estimate yet another
equation, now discarding the other offending variable (X1},

Y =g+ hyXa + ¥ Model 1.

if the Model 11 and Model 111 estimates are evaluated, along with those
of Model I, then the damage done by the specification error can be more
fully assessed.

High Multicoliinearity: An Example

In order to grasp more completely the influences of high multicol-
linearity, it is helpful to explore 2 real data example. First, we present
research findings reported by sociologist Gino Germani (1973). Then, we
examine these findings with an eye to the multicollinearity issue.” Germani
wishes to explain the vote support Juan Peron garnered in the 1946
presidential election in Argentina. His special interest is in assessing the
backing Peron received from workers and internal migrants. To do so, he
formulates a muitiple regression model, arriving at the following estimates,

$= 52 4 18X, — 10Ky — STXy — 357Xy + 29%Ks
(a3) (4D (43 @59 (07

R? = .24 n=181 se=.11,

where Y = the percentage of the county’s 1946 presidential vote going to
Peron; X, = urban blue-coliar workers (as a percentage of the economically
active population in the county); Xz = rural blue-collar workers (as a
percentage of the gconomically active population in the county); Xs =
urban white-collar workers (as a percentage of the economically active
population in the county);, Xs = rural white-coliar workers {as a per-
centage of the economically active population in the county); Xs = internal
migrants {as a percentage of Argentinian-born males); the figures in
parentheses are the standard errors of the slope estimates; the asterisk, *,
indicates a coefficient statistically significant at the .05 level, two-tailed;
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R’ = coefficient of multiple determination; n = {81 counties that contained
a city of at least 5000 people; s. = the standard error of estimate of Y.

These results suggest that only the presence of internal migrants sig-
nificantly affected Peron support. We are pushed to the conclusion that
the workers were not an influential factor in the election of Juan Peron.
Such a conclusion becomes much less certain when we inspect the multi-
collinearity in the data. Let us diagnose the level of multicollinearity by
regressing each independent variable on the remaining mdependent
variables. This yields the following R}, ,» in order of magnitude: R =.99,
Ri, = 98, R = 98, Ri, = .75, R}, = 32.

Obvmusiy, extreme mult;coilmearlty is present. How might it be cor-
rected? Further observations cannot be gathered. It is not sensible to
combine any of the variables into an index. The purpose of the equation is
not prediction. (If it were, the low Ry would inhibit it.) We are left with
the strategy of discarding offendmg variables. An examination of the
Rs shows that the largest is Rxg The variable, Xz, is an almost perfect
imear function of ali the other independent variables (X, Xs, X, Xs).
Suppose we remove X, from the equation and reestimate:

w42 + 28%X| — ATEX; — 307K, + 30%Xs
(.07 (1% (1.41) (.07)
R*=24  n=181 5o =11,
where definitions are the same as above.

According to these new estimates, a// the variables have a statistically
significant impact. Contrary to the earlier conclusion, workers do appear
to have contributed to the election of Peron. How reliable are these new
estimates? One check is to recalculate the level of multicollinearity.
Regressing each independent variable on the remaining variables in the
revised equation ylelds Rx3"“ .38, R2 .30, R =.29, R2 =.20,. We observe
that all of these R are quite far from unsty, mdicatmg that multicol-
linearity has ceased o be problematic. The revised parameter estimates
would appear much more reliable than the contrary ones generated with
the offending X, in the equation. Hopefully, this rather dramatic example
brings home the perils of high multicollinearity.

The Relative Importance of the Independent Variables

We sometimes want to evaluate the relative importance of the in-
dependent variables in determining Y. An obvious procedure is to com-
pare the magnitudes of the partial slopes. However, this effort is often
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thwarted by the different measurement units and variances of the variables.
Suppose, for example, the following multiple regression equation pre-
dicting doliars contributed to political campaigns as a function of an
individual’s age and income,

{ =8+ 2% +.010Xs,

where Y = campaign contributions (in dollars), X: = age (in years), Xz =
income (in dollars).

The relative influence of income and age on campaign contributions
is difficult to assess, for the measurement units are not comparable, that is,
dollars versus years. One solution is to standardize the variables, re-
estimate, and evaluate the new coefficients. (Some computing routines
for regression, such as that of SPSS, automatically provide the standard-
ized coefficients along with the unstandardized coefficients.) Any variable
is standardized by converting its scores into standard deviation units
from the mean. For the above variables, then,

£ Y=Y *Mxi—xl . X
Yie s X T
¥ ,\1 .\2

where the asterisk, *, indicates the variable is standardized.
Reformulating the mode! with these variables yields,

Sk _ * ®
YT =B Xy By

(Note that standardization forces the intercept to zero.) The standardized
partial slope is often designated with “B8,” and referred toas a beta weight,
or beta coefficient. (Do not confuse this 8 with the symbol for the popu-
lation slope.)

The beta weight corrects the unstandardized partial stope by the ratio
of the standard deviation of the independent variable to the standard
deviation of the dependent variable:

1n the special case of the bivariate regression model, the beta weight equals
the simple correlation between the two variables. That is, assuming the
model,

Y=a+bX+e,
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then,

8
ﬁﬁb —._)i = r,

¥

However, this equality does not hold for a multiple regression model.
(Only in the unique circumstance of no multicollinearity would 8 = r
with a multiple regression model.)

The standardized partial slope estimate, or beta weight, indicates
the average standard deviation change in Y associated with a standard
deviation change in X, when the other independent variables are held
constant. Suppose the beta weights for the above campaign contribution
equation are as follows:

A*.... # *
Y o= A5X 45X

For example, B = 45 says that a one standard deviation change in
income is associated with a 45 standard deviation change in campaign
contributions, on the average, with age held constant. Let us consider the
meaning of this interpretation more fully. Assuming X; is normally dis-
tributed, then a one standard deviation income rise for persons at, say, the
mean income would move them into a high income bracket, above which
only about 16% of the population resided. We see that this strong manipu-
lation of X does not result in as strong a response in Y, for 8, is far from
unity. Still, campaign contributions do tend to climb by almost one-haif
of a standard deviation. In contrast, a considerable advance in age (a full
one standard deviation increase) elicits a very modest increment in con-
tributions (only .15 of a standard deviation). We conclude that the impact
of income, as measured in standard deviation units, is greater than the
impact of age, likewise measured. Indeed, it seems that the effect of income
on campaign contributions is three times that of age (.45/.15 = 3).

The ability of standardization to assure the comparability of measure-
ment units guarantees its appeal, when the analyst is interested in the
relative effects of the independent variables. However, difficulties can
arise if one wishes to make comparisons across samples. This is because,
in estimating the same equation across samples, the value of the beta
weight, unlike the value of the unstandardized slope, can change merely
because the variance of X changes. In fact, the larger (smaller) the vari-
ance in X, the larger (smaller) the beta weight, other things being equal.
(To understand this, consider again the beta weight formula,
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We see that, as s,, the numerator of the fraction, increases, the magnitude
of B must necessarily increase.)

As an example, suppose that the above campaign contributions model
was developed from a U.S. sample, and we wished to test it for another
Western democracy, say Sweden. Our beta weights from this hypothetical
sample of the Swedish electorate might be,

T* = 18X0 + 22,

where the variables are defined as above. Comparing 82 (United States) =
45 to B2 (Sweden) = .22, we are tempted to conciude that the effect of
income in Sweden is about one-half its effect in the United States. How-
ever, this inference may well be wrong, given that the standard deviation of
of income in the United States is greater than the standard deviation of
income in Sweden. That is, the wider spread of incomes in the United
States may be masking the more equal effecta unit income change actually
has in both countries, that is, b; (United States) = b; (Sweden). To test
for this possibility, we must of course examine the unstandardized partial
slopes, which we suppose to be the following:

$ 294 17X +.012Xa.

When these unstandardized Swedish results are compared to the un-
standardized United States results, they suggest that, in reality, the effect
of income on campaign contributions is essentially the same in both
countries (010 = .012). In general, when the variance in X diverges from
one sample to the next, it is preferable to base any cross-sample com-
parisons of effect on the unstandardized partial slopes.

Extending the Regression Model: Dummy Variables

Regression analysis encourages the use of variables whose amounts
can be measured with numeric precision, that is, interval variables. A
classic example of such a variable is income. Individuals can be ordered
numerically according to their quantity of income, from the lowest to
the highest. Thus, we can say that John’s income of $12,000 is Jarger than
Bill's income of $6,000: in fact, it is exactly twice as large. Of course, not all
variables are measured at a level which allows such precise comparison.
Nevertheless, these noninterval variables are candidates for incorporation
into a regression framework, through the employment of dummy vari-
ables.

Many noninterval variables can be considered dichotomies, e.g., seX
(male, female), race (Black, White), marital status (single, married). Dichot-
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omous independent variables do not cause the regression estimates to
lose any of their desirable properties. Because they have two categories,
they manage to “trick™ least squares, entering the equation as an interval
variable with just two values. It is useful to examine how such “dummy”
variables work. Suppose we argue that a person’s income is predicted
by race in this bivariate regression,

Ly
Y =a+bX,

where Y = income, X = race (0 = Black, | = White), If X = 0, then

N

Y =a,
the prediction of the mean income for Blacks. If X = I, then
A
Y=a+th,

the prediction of the mean income for Whites. Therefore, the slope esti-
mate, b, indicates the difference between the mean incomes of Blacks.and
Whites. As always, the t ratio of b measures its statistical significance.
We have already observed such a dummy variable in action, in the four-
variable Riverside equation, which included sex as an independent vari-
able (0 = female, 1 = male). There, the partial regression coefficient, bs,
reports the difference in average income between men and women, after
the influences of education and seniority have been accounted for. As
noted, this difference is statistically and substantively signﬁcant.

Obviously, not all noninterval variables are dichotomous. Noninterval
variables with multiple categories are of two basic types: ordinal and
nominal, With an ordinal variable, cases can be ordered in terms of
amount, but not with numeric precision. Attitudinal variables are com-
monly of this kind. For example, in a survey of the electorate, respondents
may be asked to evaluate their political interest, ranking themselves as
“not interested,” “somewhat interested,” or “very interested.” We can
say that Respondent A, who chooses “very interested,” is more interested
in politics than Respondent B, who selects “not interested,” but we cannot
say numerically how much more. Ordinal variables, then, only admit
of a ranking from “less to more.” The categories of a nominal variable,
in contrast, cannot be so ordered. The variable of religious affiliation is
a good example. The categories of Protestant, Catholic, or Jew represent
personal attributes which yield no meaningful ranking.

Noninterval variables with multiple categories, whether ordinal or
nominal, can be incorporated into the multiple regression model through
the dummy variable technique. Let us explore an example. Suppose the
dollars an individual contributes to a political campaign are a function
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of the above-mentioned ordinal variable, political interest. Then, a correct
model would be

Yo=mag+ X+ Xy + g,

where Y = campaign contributions (in dollars); X, = 2 dummy variable,
scored | if “somewhat interested,” 0 if otherwise; X: = a dummy variable,
scored 1 if “very interested,” O if otherwise; ¢ = error.

Observe that there are only rwo dummy variables to represent the
trichotomous variable of political interest. If there were three dummy
variables, then the parameters could not be uniguely estimated. That is,
a third dummy, X; {scored 1 if “not interested,” 0 if otherwise), would be
an exact linear function of the others, X, and X:. (Consider that when
the score of any respondent on X, and X; is known, it would always be
possible to predict his or her X; score. For example, if a respondent has
values of 0 on X, and 0 on Xa, then he or she is necessarily “not interested™
in politics, and would score | on X3.) This describes a situation of perfect
multicollinearity, in which estimation cannot proceed. To avoid such a
trap, which is easy to fall into, we memorize this rule: When a noninterval
variable has G categories, use G ~ I dummy variables 10 represent i1,

A question now arises as to how to estimate the campaign contributions
of this excluded group, those who responded “not interested.” Their
average campaign contribution is estimated by the intercept of the equa-
tion. That is, for someone who is “not interested,” the prediction equation
reduces to,

-
Y = a + by X+ baX;
= ap + bi(0) + ba(0)
A
Y = ao.
Thus, the intercept estimates the average campaign contribution of some-
one who is “not interested™ in politics.
This estimated contribution, ag, for the “not interested™ category
serves as a base for comparing the effects of the other categories of political

interest, The prediction equation for someone in the category, “somewhat
interested,” reduces to

Y = a0+ biXs + baXa
= a0 + by(1) + b}

{f=ao+b1.




69

Hence, the partial slope estimate, by, indicates the difference in mean
campaign contributions between those “somewhat interested” and those
“not mterested,” that is, (ag + b)) ~ a0 = by.

For the last category, “very interested,” the prediction equation re-
duces to

Y= a0+ biXe + byXs
=gt bi(0) + ba(1)
?Z&o*’ ba.

Thus, the partial slope estimate, by, points out the difference in average
campaign contributions between the “very interested” and the “not
interested.” Given the hypothesis that heightened political interest in-
creases campaign contributions, we would expect that b, > by.

A data example will increase our appreciation of the utility of dummy
variables. Suppose, with the Riverside study, it occurs to us that the
income received from working for city government might be determined
in part by the employee’s political party affiliation (Democrat, Republican,
or independent). In that case, the proper specification of the model
becomes,

Y =a0+ biX; + 02Xo o+ Xy + baXy + bsXs + g,

where Y = income; X, = education; X; = seniority; X; =sex; X4 = a dummy
variable scored 1 if independent, 0 otherwise; Xs = a dummy variable
scored | if Republican, 0 otherwise; e = error.

The variable, political party, has three categories. Thus, applying the
G - 1 rule, we had to formulate 3 - 1 = 2 dummy variables. We chose to
construct one for independents (X4) and one for Republicans (Xs), which
left Democrats as the base category. The selection of a base category is
entirely up to the analyst. Here, we selected Democrats as the standard
for comparison because we guessed they would have the lowest income,
with independents and Republicans having successively higher incomes.

Least squares yields the following parameter estimates,

V= 5496 + 382X, + 250X, + 2134X; — 572X, + 386X,
(3.90) (2.74) (278) (233) (—48) (4I)

R? =73 n=32 s, =2403,

where the variables are defined as above, the values in parentheses are
t ratios, the R” = the coefficient of multiple determination, n = sample size,
s. = standard error of estimate for Y.
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First, we note that the estimates from our prior specification remain
virtually unchanged. Further, from the t ratio, we sce that the average
income of independents is not significantly different (.05 level) from the
average income of Democrats, once the effects of education, seniofity,
and sex are controlled. (Put another way, bs does not add significantly
to the intercept, ap.) Likewise, the average income of Republicans s
found not to differ significantly from that of the Democrats. We must
conclude that, contrary to our expectation, political party affiliation does
not influence the income of Riverside municipal employees. Our original
four-variable model remains the preferred specification.

Through use of the dummy variable technique, the inclusion into our
multiple regression equation of the noninterval variable, political party,
poses no problem. Some researchers would argue that this variable could
be inserted into our regression equation directly, bypassing the dummy
variable route. The argument is that an ordinal variable is a candidate
for regression, even though the distances between the categories are not
exactly equal, Thisisa controversial point of view. In brief, the advocates’
primary defense is that, in practice, the conclusions are usually equivalent
to those generated by more correct techniques (i.e., the application of
dummy variable regression or ordinal-level statistics). A secondary
argument is that multiple regression analysis is so powerful, compared to
ordinal-level techniques, that the risk of error is acceptable. We cannot
resolve this debate here. However, we can provide a practical test by
incorporating political party into the Riverside equation as an ordinal
variable,

At first blush, political party affiliation may appear as strictly nominal.
Nevertheless, political scientists commonly treat it as ordinal. We can say,
for example, that an independent is “more Republican” thana Democrat,
who is “least Republican” of all. Hence, we can order the categories in
terms of their “distance” from Republicans. This order is indicated in the
following numeric code, Democrat = 0, independent = 1, Republican = 2,
which ranks the categories along this dimension of “Republicanism.”
This code provides each respondent a score on a political party variable,
X4, which we now enter into the Riverside equation. Least squares yields
the following estimates,

Y= 5314 + 392X, + 243X, + 21375 + 186X,
G87) (285 (2.74)  (236) (40
R? =73 n=32 s, = 2380,

where Y = income; X = education; X, = seniority; X3 = sex; X4 = political
party affiliation, scored 0 = Democrat, 1 = independent, 2 = Republican;
and the statistics are defined as above.
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The estimates for the coefficients of our original variables are essentially
unchanged. Also, political party affiliation is shown to have no statistically
significant impact on employee’s income (t < 2). Thus, in this particular
case, regression analysis with an ordinal variable arrives at the same
conclusion as the more proper regression analysis with dummy variables.

Determinants of Coal Mining Fatalities:
A Multiple Regression Example

Let us pick up the explanation of coal mining fatalities begun earlier.
It is now clear that our bivariate model is incomplete. On the basis of
theoretical considerations, prior research, and indicator availability,
we formulate the following explanatory madel:

Yzas+ b Xy + baXo+ byXs e,

where Y = the annual coal mining fatality rate (measured as deaths per
millfon hours worked); X, = the natural logarithm of the annual federal
coal mining safety budget (measured in thousands of constant dollars,
1967 = 100}; X; = the percentage of miners working underground; X; = a
dummy variable for the President’s political party, scored O when the
President that year is Republican and ! when Democrat; ¢ = error.

We have already argued that the coal mining fatality rate falls in re-
sponse to more vigorous safety enforcement, measured by the Bureau
of Mines safety budget, X,. Further, we contend that when the per-
centage of miners working underground (as opposed to strip mining)
advances, the fatality rate rises. Last, we believe that the political party
in the White House, X3, makes a difference, with Democrats more likely
than Republicans to take measures to reduce fatalities. Let us test these
hypotheses.

Least squares yields these estimates (the data sources are those men-
tioned previously):

V=123 - 189X, + 019X, + 046X,
(175) (~648) (3.06) (84)

R? = 83 n =44 5, =.13

where the values in parentheses are the t ratios, the R? = the coefficient of
multiple determination, n = 44 annual observations from 1932-1975
(the 1976 figure was not available for X;), s. = the standard error of estimate
forY.
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These results suggest that federal safety enforcement, X1, and the extent
to which mining is carried on underground, Xa, significantly influence
the fatality rate. However, the President’s party, Xi, appears to have no
significant impact on the fatality rate. (The t ratio for b is quite far from
the value of 2.) But before rejecting our hypothesis on the effect of the
President’s party, we should perhaps check for a multicollinearity problem.
After all, it may simply be multicollinearity that is causing bs to fall short
of statistical significance. Regressing each independent variable on the
others in the equation yields Rﬁ, = 63, Riz = .45, Ria = .46, The presidential
party variable, X, when regressed on X, and Xz, produces an R? which is
a long way from unity. Further, according to the R? for the other in-
dependent variables, they manifest at least the same degree of rmulticol-
linearity, but their regression coefficients still manage to attain statistical
significance. In sum, it seems unlikely that multicollinearity i5 the cause
of a lack of statistical significance for bs.

We can conclude, with greater confidence, that the coal mining fatality
rate is unaltered by political party changes in the White House. This
causes us to revise our model specification and reestimate our equation,
as follows:

¥= 158 — 206X, + 017X,
(2.80) (~9.58) (3.00)

R? = 83 n =44 5, = .13,

where the terms are defined as above.

This multiple regression model improves our explanation of the coal
mining fatality rate, over our carlier bivariate regression model. The R?,
which is somewhat greater, indicates that fully 83% of the variance is
being accounted for, Further, the more adequate specification has reduced
the bias of the slope estimate for the safety expenditures variable, Xu. In
the bivariate equation, this slope = - 247, which exaggerates the ability
of safety budget increases to lower fatalities. Because Xa was excluded,
X, was permitted to account for a part of Y which should be explained by
X,. Inclusion of X; in our muitiple regression equation shrunk the effect
of safety expenditures to its proper size (by = -.206).

1s this newly incorporated variable, the percentage of miners under-
ground, even more important a determinant of the coal mining fatality
rate than the safety budget variable? Evaluation of the beta weights pro-
vides one answer to this guestion. Standardizing the variables and re-
estimating the equation yields,

§r = 275X + 24X,
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where the variables are defined as above, and standardized, as indicated
by the asterisk, *. These beta weights suggest that the safety budget is a
more important influence on the fatality rate than is the percentage of
miners underground. In fact, a standard deviation change in the safety
budget variable has about three times the impact of a comparable change
in the percentage of miners underground.

What Next?

Comprehension of the material in this monograph should permit the
reader to use regression analysis widely and easily. Of course, in so few
pages, not everything can be treated exhaustively. There are topics which
merit further study. Nonlinearity is one such topic. While relationships
among social science variables are often linear, it is not uncommon for
nonlinearity to occur, We spelled out the consequences of violating the
linearity assumption, and provided an example of how a nonlinear
relationship was straightened out by a logarithmic transformation. Other
such linearizing transformations are available, whose appropriateness
depends on the shape of the particular curve. Popular ones are the re-
ciprocal,

and the second-order polynomial.
Y=a9+ng+bzxz+e.

(For good discussions of these and other transformations, see Kelejian
and Oates, 1974, pp. 92-102, 167-175; Tufte, 1974, pp. 108-130.)

Another topic which we only touched on was the use of time-series.
As noted, autocorrelation is frequently a problem in the analysis of time-
series data. Take, for example, the model,

Y, =a+bX, ¥ e,

where the subscript i has been replaced with t in order to indicate “time,™
Y. = annual federal government expenditures, X, = annual presidential
budget request, e = error term. When we think of e, as including omitted
explanatory variables, autocorrelation appears quite likely. Suppose, for
instance, that one of these omitted variables is annual gross national
product (GNP); clearly, GNP from the previous year (GNP,.,) is correlated
with GNP from the current year (GNP.); hence, feee ., # 0. This error
process, in which error from the immediately prior time (e.-,) is correlated
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with error at the present time (e)), describes a first-order autoregressive
process. This process can be easily detected (e.g., with the Durbin-Watson
test) and corrected {e.g., with the Cochrang-Orcutt technique).S Other
error processes are more difficult to diagnose and cure. (The problems and
opportunities of time-series are introduced in Ostrom, 1978.)

In our exposition of regression, we have consciously stressed verbal
interpretation rather than mathematical derivation. Given it is an intro-
duction, such emphasis seems proper. At this point, the serious student
might wish to work through the material using the calculus and matrix
algebra. (For this purpose, consult the relevant sections of Kmenta, 1971,
and Pindyck and Rubinfeld, 1976.)

Throughout, we have formulated single-equation models, either
bivariate or multivariate. We could also propose multiequation models.
These models, known technically as simultaneous-equation maodels,
become important when we believe causation is two way, rather than one
way. For example, a simpie regression model assumes that X causes Y,
but not vice versa, that is, X —Y. Perhaps, though, X causes Y, and
Y causes X, that is, X ==Y This is a case of reciprocal causation, where
we have two equations,

Y=a+bX+e
X=a+bY +e

The temptation is to estimate each with the ordinary least squares pro-
cedure we have learned here, Unfortunately, in the face of reciprocal
causation, ordinary least squares will generally produce biased parameter
estimates. Therefore, we must modify our procedure, probably appiying
two-stage least squares. Reciprocal causation and the ensuing problems
of estimation form the core issues of causal modeling (Asher, 1976, pro-
vides a useful treatment of this topic). Happily, a firm grasp of regression
analysis will speed the student’s mastery of causal modeling, as well as a
host of other guantitative technigues.




NOTES

1. We are all familiar with the common example of a simple random sample, the lot-
tery, where all the tickets are tossed and the winning ones are drawn out “at random.”
Stastical tests for making inferences from a sample to a population, such as the signifi-
cance test, are based on a simple random sample,

2. A formuia for the estimated correlation coefficient is,

1, =s, . [s.s

Xy Uxy'xy
where
R ZX, - X (Y~ D)
Sxy = covariancexy = — .
and

~
8y F standard dev1at;onx =

dard d
s, = standard deviation_ =
¥ y

3. One might wonder why omitted explanatory variables are not simply incorpo-
rated inte the equation, thus solving for autocorrelation and specification error at the
same time. Lamentably, this straightforward solution is not possible when these vari-
ables are either unknown or unmeasured.

4. This example was uncovered and diagnosed entirely by my colleague, Peter Snow.
He graciously allowed me to reproduce if here.

5. We might note that the Durbin-Watson test fails to reveal significant autocorre-
lation in the error process of our multiple regression model for coal mining fatalities.
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