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Series Editor’s Introduction

Muitiple regression analysis is one of the most popular statistical
estimation procedures in the social sciences. In response to this fact, we
have already published two regression-related monographs in this
series, Applied Regression by Michael Lewis-Beck and Interpreting and
Using Regression by Christopher Achen. The former provides a basic
introduction to the procedure whereas the latter examines how and
under what circumstances regression is actually put to use in good social
science research.

In Multiple Regression in Practice, William Berry and Stanley
Feldman provide a systematic treatment of many of the major prob-
lems encountered in using regression analysis. Because it is likely that
one or more of the assumptions of the regression model will be violated
in a specific empirical analysis, the ability to know when problems exist
and to take appropriate action helps to ensure the proper use of the
procedure. Responding to this need for understanding, Berry and
Feldman clearly and concisgly discuss the consequences of violating the
assumptions of the regression model, procedures for detecting when
such violations exist, and strategies for dealing with these problems
when they arise. The monograph thus takes the reader a long way in
understanding the major problems posed—and potential solutions to
those problems—when actually using multiple regression to test social
science hypotheses.

In order to make the presentation as accessible as possible, the
monograph was written without the use of matrix alegbra. And, when-
ever possible, the notation used is consistent with Lewis-Beck’s Applied
Regression. Because both the present volume and that by Achen assume
a basic level of familiarity with regression analysis, they both make
excellent companion and follow-up works to Lewis-Beck’s introduction,

Berry and Feldman illustrate the problems facing researchers and the
solutions they offer with numerous examples from political science,
sociology, and economics. Because many applications of regression in
the social sciences involve analysis of samples of cases randomly drawn
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froma lar‘ger population, some of the major examples are constructed to
show more clearly the properties of regression estimates derived from
samples. Specifically, Berry and Feldman explain clearly the concepts of
bias and efficiency in statistical estimation—key concepts that are often
confusing to students. By making use of repeated sampling from a
known population, the properties of sample estimators are much gasier
to understand.

In short, Multiple Regression in Practice should be a valuable aid for
anyone making use of regression analysis in their research or anyone
simply interested in understanding more fully this important statistical
procedure.

—Richard G. Niemi
Series Co-Editor




Introduction

Multiple regression analysis is an important tool for social scientists
in the analysis of nonexperimental data, When the assumptions of
regression analysis are met, the coefficient estimates derived for a ran-
dom sample will have many desirable properties, In the real world of
research, however, one or more of these assumptions are likely to be
violated. And when this occurs, the application of regression analysis
may produce misleading or problematic coefficient estimates. If no
useful results could be drawn when assumptions are violated, or no
modifications of regression analysis could be made to deal with the
violations, the attractiveness of multiple regression would be reduced
significantly. Fortunately, there are means to detect when some of the
assumptions are violated and procedures that can be employed to deal
with the resulting problems. In Chapters 2 through 6 of this monograph,
we will analyze the key assumptions of multiple regression analysis in a
systematic manner. For each assumption, we will discuss the situations
in which the assumption is likely to be violated, what effect violating the
assumption has on the nature of coefficient estimates, how the violation
can be detected in actual research, and what can be done to overcome
the problems that result when the assumption is violated.

We will illustrate many of our points with examples. Because in most
social science applications, regression analysis will be applied to a
sample of cases from a population, we will frequently illustrate the
properties of regression coefficient estimators by defining a “popula-
tion” of cases and drawing a large number of random samples from this
population. These examples will help show the problems that may arise
when the coefficients of a regression equation are estimated from a
single random sample. Although the “populations” so defined will be
drawn from actual data sets, the cases will be selected to illustrate
particular statistical issues. Thus, the substantive resuits presented in
these illustrations should not be interpreted as necessarily representative
of any “real-world” population.




We assume that readers of this monograph have had a prior intro-
duction to regression analysis comparable to the level of Lewis-Beck’s
(1980) monograph, Applied Regression: An In troduction. Although we
will present an introduction to the multiple regression model in Chap-
ter 1, this is intended as a review of fundamentals and notasa complete
intoduction to the subject. Because we are assuming nothing more than
an introduction to multiple regression, we will not use matrix algebra in
our presentation. We hope this will make our discussion of the appli-
cation of the multiple regression model accessible to as many people as
possible.

Acknowledgment

We would like to thank Steve Thomson for his assistance in designing
computer programs to run regressions on repeated samples from a
population; he saved us considerable time and effort. We are also
indebted to Tse-min Lin for detection of an error in our discussion of
the consequences of heteroscedasticity in an earlier printing.

—W.ID).B. and S.F.




MULTIPLE
REGRESSION
IN PRACTICE

WILLIAM D. BERRY
Florida State University
STANLEY FELDMAN
SUNY at Stony Brook

1. THE MULTIPLE REGRESSION MODEL:
A REVIEW

In the general form of the linear regression model, the dependent
variable, Y, is assumed to be a function of a set of k independent
variables—Xi, X2, X1, . . . , Xk—in a population. To express the modelin
equation form, we use X to denote the value of the | observation of the
variable X:. The linear regression model assumes that for each set of
values for the k independent variables (X, Xaj, . .., Xy} there is a
distribution of Y; values such that the mean of the distribution is on the
surface represented by the equation

B(Y)=a+ 8, X, +6,X, + ...+ B X, [1.1]

where the Greek letter coefficient «, 81, B2, . . . , Bk represent population
parameters. The interpretation of these parameters is straightforward.
Biis called a partial slope coefficient as it is what mathematicians call the
slope of the relationship between the independent variable X; and the
dependent variable Y holding all other independent variables constant.
Put differently, Birepresents the change in E(Y) (the expected value of Y)
associated with a one unit increase in X; when ali other independent
variables in the model are held constant.' &, on the other hand, is called
the intercept, and represents geometrically the value of E(Y) where the
regression surface (or plane) crosses the Y axis, or subtantively, the
expected value of Y when all the independent variables equal zero.
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Each individual observation of Y; is assumed to be determined by an
equation containing an error term:

Y =atf X tBX, . TR X e [1.2]

Thus, the error term ¢ is the deviation of the value of Y; from the mean
value of the distribution obtained by repeated observation of Y values
for cases each with fixed values for each of the independent variables.
This error term may be conceived as representing (1) the effects on Y of
variables not explicitly included in the equation, and (2) a residual
random element in the dependent variable.

For much of this monograph it will be unnecessary to specify the
model in terms of a specific observation, so for ease of notation we will
often drop the subscript, j. This leaves us with a population regression
equation of

Y=a+B X +8,X,+.. . +f X +e 1.3]
k
=at 2 BX te
i=1

Although implicit in the way the regression equation is written, we
should note that it is assumed that the relationship between E(Y) and
each X; is linear, and that the effects of the k independent variables are
additive. (A more detailed discussion of the meaning and implications of
linearity and additivity is contained in Chapter 5.} In addition, several
other assumptions must be met to be able to appropriately estimate the
population parameters and conduct tests of statistical significance. They
are as follows:

(1) All variables must be measured at the interval level and without
error.

(2) For each set of values for the k independent variables (X,
X, ..., Xi), E(&) = 0 (i.e., the mean value of the error termis 0).

(3) Foreach set of values for the k independent variables, VAR (g) =
o’ (i.e., the variance of the error term is constant).

(4) For any two sets of values for the k independent variables,
COV(g, &) = 0 (i.e., the error terms are uncorrelated; thus there
is no autocorrelation).

(5) Foreach X;, COV(X,, €) =0 (i.e., each independent variable is un-
correlated with the error term).
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(6) There is no perfect collinearity—no independent variable is
perfectly linearly related to one or more of the other independent
variables in the model.

(7) For each set of values for the k independent variables, ¢ is
normally distributed.

These are the basic assumptions of the multiple regression model;
problems associated with the violation of these assumptions will form
the basis of the subsequent chapters of this monograph. The problem of
measurement error (assumption 1) will be considered in Chapter 3. If the
variance of the error term is not constant (assumption 3), one is faced
with heteroscedasticity, discussed in Chapter 6. The violation of assump-
tion 4—autocorrelation—is also considered in Chapter 6. When the
independent variables are correlated with the error term (assumption 5),
the result is specification error, which is dealt with in Chapter 2. The
problem of multicollinearity (assumption 6) is discussed in Chapter 4.

Assumption 2 states that the mean value of the error term is zero. This
should be of concern only when the analyst is interested in the precise value
of the intercept. If this assumption is violated, the intercept is the only
coefficient of the regression model that is affected. Finally, assumption7
states that the error term must be normally distributed. This assumption
is necessary only for tests of statistical significance; its violation will
have no effect on the estimation of the parameters of the regression
model. It is quite fortunate that normality is not required for estimation,
because it is often very difficult to defend this assumption in practice.
Furthermore, even to justify tests of significance, the normality assump-
tion is critical only with small samples. In large samples, we can rely on
the so-called central limit theory to ensure that even if the error term is
not normally distributed in the population, the sampling distribution of
a partial slope coefficient estimator will be normally distributed (see
Hanushek and Jackson, 1977: 68). As Bohrnstedt and Carter (1971)
have shown, regression analysis is quite robust against violations of
normality and thus significance tests can be done in large samples even
when this assumption cannot be justified substantively.

Parameter estimation. In most situations, we are not in a position to
determine the population parameters directly; instead we must estimate
their values using data from a finite sample (of size n) from the popula-
tion. To distinguish it from the population regression equation, the
sample regression model will be written as

Y =atb, X, tb,X, ... tb X e [1.4]
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The most common way of estimating the valuesaand the bi(i=1,2,...,k)
is to employ the least squares criterion—to use ordinary least squares
(OLS) regression. To do this we find those values of a, b1, ba, . ..., by that
minimize the sum of the squared deviations of the observations, Y;, from
the predicted values of Y, ¥;:

a

(Yj -

%E'M E=}

2 [1.5]

Jw 1

where

- ‘ k
Y=at T bX, {1.6)

=1 i
For the bivariate model with slope b: and intercept a,
Y=a+b X, +e [1.71
the value of b: that minimizes

n
2
2, (Y ma=b, X [1.8]

can be shown to be

j§1 (Xli - j—(i) (Y.i -
by = T = 1]
=1(Xis.'“X1)

J

where y; = Y; -~ ¥ and x; = X; - X. Once by is known, a can be computed
from

a=Y-b X [1.10]
For the general case (with k independent variables), the formulas for the
parameter estimators a, by, be, . . ., brare sufficiently complicated tore-
quire matrix algebra (see Hanushek and Jackson, 1977, Chapter 5, for
the general formula).

Sampling error. When estimating a population parameter from a
sample it is important not only to derive a specific value, but also to
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estimate the effect of sampling error on the estimate. To accomplish this,
it is necessary to consider the concept of a sampling distribution for a
regression coefficient. This can be most easily understood as the distri-
bution of the estimates of the regression coefficient that would result if
samples of a given size were drawn repeatedly from the population and
the coefficient calculated for each sample. Because coefficients esti-
mated from random samples will deviate from population values by
varying amounts, the estimates of the coefficients from a series of
random samples of a population will not be identical, but instead will
distribute themselves around a mean. The estimated standard deviation
of the sampling distribution of a regression coefficient is known as a
standard error, and is denoted by an “s” with a subscript of the regres-
sion coefficient of interest. In the bivariate case, the standard error of the
slope coefficient estimator can be calculated by:

2 (%~ 402
N [1.11]
T (X -X?
=17

Extending this to the two variable case yields formulae for

2= @3

z ~-XYa-7 )
J'=1(X1j )70 X%,
[1.12]

PR ARIGED)

j§1 X5 -Xra Mrilxz)

Finally, we can go one step further and derive a formula for the standard
error of the partial slope coefficient estimator for a model with any
number of independent variables:

S = [— ] [1.13]
P (X, ~R*(1 - R?) (n—k~1)
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where n is the sample size, k is the number of independent variables in
the regression equation, and R? is the squared multiple correlation
obtained by regressing X; on all the other independent variables.

Looking at the component parts of equation 1.13 is helpfulin under-
standing how the standard error of a partial slope coefficient varies. The
term in the numerator of equation 1.13 shows that, all else being equal,
the smaller the errors in predicting the dependent variable, the smaller
will be the standard error. There are three terms in the denominator. The
first shows that the larger the variance of the independent variable, the
smaller will be the standard error. The second shows that as the multiple
correlation between the independent variable and all other independent
variables in the equation increases, the standard error will increase.
Finally, for a specific number of independent variables, as the number of
cases in the sample increases, the standard error will decrease. On the
other hand, as the number of independent variables approaches the
sample size, the standard error will increase rapidly.

Having derived estimators of the parameters in the regression model,
we would also like to show that these particular estimators are in some
definable sense “good” ones. This requires that we review some desirable
properties of estimators. Two are particularly useful. First, we would
like an estimator to be unbiased. An unbiased estimator is one whose
mean over an infinite number of repeated samples is equal to the value of
the population parameter to be estimated. This can be expressed more
precisely:

& is an unbiased estimate of § if B(§) =6 {1.14]

Unbiasedness is clearly a desirable property of an estimate of a regres-
sion coefficient. It tells us that “on average” our effort to estimate the
population parameter will be accurate. However, it must be recognized
that unbiasedness does no? in any sense guarantee that any particular
estimate of a regression coefficient will equal its population parameter.
Because we have just seen that repeated sampling from a population will
produce a distribution of estimates for a partial slope coefficient, by, all
that unbiasedness does is to ensure that the mean of this distribution will
equal .. Thus, in any particular sample, we can be sure that an unbiased
estimate is no more likely to overestimate B than to underestimate it.
It should be clear from this discussion that unbiasedness is of little use
if the sampling distribution of a regression coefficient estimator is very
wide (i.e., the standard error of b; is large). This leads us to the property
of efficiency. All things being equal, we would like the variance of the
sampling distribution of an estimator to be as small as possible. More
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precisely, b; is considered to be an efficient estimator of 8 if b; is
unbiased, and s,, is smaller than the standard error of any other unbiased
estimator of B.

An important result in multiple regression is the Gauss-Markov
theorem, which proves that when assumptions 1-6 are met, the least
squares estimators of regression parameters are unbiased and efficient.
In shorthand, the least squares estimators are said to be BLUE: Best
Linear Unbiased Estimators. The Gauss-Markov theorem does not
guarantee that the least squares estimators that we have just derived will
always be the best estimates of the population parameters. Most impor-
tantly, the theorem holds only when the assumptions of the regression
meodel are met. If, for example, the true relationship between the
dependent and independent variables is not linear, an aiternative model
will clearly give better estimates. Moreover, the Gauss-Markov theorem
does not mean that the least squares estimators will have a smaller
variance than any other estimator; it is possible that some biased esti-
mators of the population parameter will have a smaller variance. Never-
theless, the Gauss-Markov theorem allows us to have considerable
confidence in the least squares estimators.

Goodness-of-fit. Another issue we need to consider in this chapter is
assessing the goodness-of-fit of the regression model. One popular
statistic is R%, which can be defined by the following formula:

n ., = n .
-9 Z (-9
j= i=
R = - =1 | [1.15]
T (Y, -~ Y s (Y, -9
=1 1 j=10 03

R? will always vary between 0 and 1. It can be interpreted as the
proportion of the original variance in Y that is “accounted for” by the
regression equation. It can also be shown that R is the square of the
correlation between Y and the estimated values, Y. It will reach its
maximum value when Y; - Y;= 0 for all observationsj, and thus when the
dependent variable is perfectly predicted by the regression equation.
A researcher should be careful to recognize the limitations of R* as a
measure of goodness-of-fit (see Achen, 1982 for a general discussion).
To begin with, it is very sample specific; regressions in two different
samples may produce identical partial slope coefficients, but R* may
differ considerably from one to the other due to differences in the
variance of the dependent variable in the samples. Also, the use of R*
can be misleading if one is trying to compare the relative goodness-of-fit
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of two regression models with differing numbers of independent vari-
ables. This is because R will always increase (to some degree) when new
yariables are added to the equation, even when they may have no effect
on the dependent variable. In fact, as the number of independent vari-
ables (k) gets ciose to the number of cases in the sample (n), Rz\.ygill
necessarily get close to 1.0. One way around this problem is to compute
an “adjusted” R?, defined as (Wonnacott and Wonnacott, 1979: 181)

R = (Rz - ;—k_—;)(nf;l) [1.16]

Constructed this way, R’ can decrease when a new variable is added to
regression model, even though R’ will always increase. In the final
analysis, however, the specification of a model should be determined by
theoretical considerations rather than by rigidly following a rule of
thumb based on an empirical measure of goodness-of-fit. (Another
important goodness-of-fit statistic is the standard error of the estimate
of Y, commonly denoted s; for a definition and discussion, see Lewis-
Beck, 1980: 37-38.)

Hypothesis testing. Given that, most often, we are faced with the
problem of estimating population parameters from a sample of data, we
are not only interested in estimating a value for parameters, but in
judging how likely it is that the estimates are close to the population
parameters. This is most frequently done through tests of statistical
significance. A test of statistical significance begins by establishing a null
hypothesis: a specific guess about a parameter value in the population.
In most cases, the nuil hypothesis will be that 8; =0; the null hypothesisis
tested against the alternative hypothesis that the regression coefficient is
not zero. After the null hypothesis is chosen, asignificance level must be estab-
lished. This is the probability level, or degree of risk, at which one is
willing to reject the null hypothesis. Finally, a test statistic is needed that
can be compared against a known probability distribution. It can be
shown (see Kmenta, 1971: 226) that

bi“ﬁiﬂ

S,

1

[1.17}

is distributed as Student’s t, with n—1 degrees of freedom (where 8 isthe
value of 8; under the null hypothesis).
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Another use of tests of statistical significance is to determine if the
joint effects of @l the independent variables on the dependent variable s
significantly different from zero. Given a multiple regression equation
with k independent variables, the nuli hypothesis is:

B, =B, =...=8, =0 {1.18]
and the appropriate test statistic is the F value

) R*/k
(t =R} /(n—k-1)

[1.19]

with k degrees of freedom in the numerator and n-k-1 in the de-
nominator,

Finally, there are also times when it is of interest to test the null
hypothesis that the joint effects of several of the k independent variables
is zero (see Chapter 4). As will be shown later, it is possible for each of a
series of independent variables to have nonsignificant partial slope
coefficient estimates but for the combined effects of those variables to be
statistically significant. More formally, if the regression model is:

Y=a+tf X +8,X,+. ...+

[1.20
CRICTN E R Y ’
and the null hypothesis to be tested is:
Bert Thg =+ =B, =0 [1.21]
then the appropriate test statistic is
(R*-R% )/
[1.22]

F=
(1-R)/(n-k-1-1)

where R? is the squared multiple correlation coefficient for the full
regression model 1.20, R2 is the squared multiple correlation for the
model in which the set of r independent variables (Xe., Xeas -+« » X
has been deleted, and where there are r degrees of freedom in the
numerator, and (n—k-r-1) degrees of freedom in the denominator.

In this chapter we have briefly reviewed the multiple regression
model. We have shown how the parameters of the model can be esti-
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mated, what the properties of those estimates are, and some ways of
assessing the overall fit of the model. Although one of the chief virtues of
OLS regression is that it can be shown to produce unbiased and efficient
estimators, it must be recognized that these desirable properties are only
obtained when the assumptions of the regression model are met in full.
Yet, in specific applications it is likely that one or more of the assump-
tions will in fact be violated. In such cases, unbiasedness or efficiency
may no longer hold. In the remainder of this monograph we will discuss
the specific consequences of violating those assumptions, how these
violations can be recognized, and what may be done to remedy the
problems created.

2. SPECIFICATION ERROR

Specification error is actually a nice way of saying that the “wrong
model” has been estimated. More precisely, we assume that in the
population there is a specific way in which some set of independent
variables, X; to X, influence a dependent variable, Y. Specification
error can result in two ways. First, we may have the proper variables in
the model but specify the functional form of the refationship improperly.
The regression model assumes that the relationships between the in-
dependent variables and the dependent 'variable are both linear and
additive. If these assumptions are violated, the least squares estimators
will be biased. The second form of specification error occurs when one
estimates a model with the wrong independent variables. Either one or
more variables that should have been in the model are omitted, or one or
more variables that should not have been included are, or both. In this
chapter we will consider the effect of including the wrong independent
variables in a regression model. The effects of nonlinearity and non-
additivity require their own treatment and will be dealt with in Chapter 6.

Consequences of Specification Error

The first case we will treat is the situation in which a researcher
mistakenly includes in the regression model an independent variable
that actually has no direct impact on the dependent variable, More
specifically, suppose the “true” population model is

Y=ot X, te [2.1]
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but'that the model estimated is
Y=atp X +8,X, t¢ [2.2]

Xiis therefore a relevant variable—actually present in the true model--
but X is an irrelevant variable, and should not be in the estimated model
at all. What then happens to the least squares estimates if equation 2.1 is
actually the true model? To begin with, it can easily be shown (see Rao
and Miller, 1971: 58) that we will get an unbiased estimator of ;. Given
that in the population X; has no effect on Y, 82 = 0. Thus, the expected
value of the estimator b is zero, so that E(b:) = 0. Similarly, it is com-
forting to note that the estimator of 8, from equation 2.2 is also un-
biased, so that E(b,) = #,. Thus even with the inclusion of an irrelevant
variable in the regression equation, the estimators of the critical in-
dependent variables are still unbiased.

As discussed in Chapter 1, however, unbiasedness is only one
desirable property of estimators; we would also like them to have as
narrow a sampling distribution as possible. It is therefore important to
consider the impact of including an irrelevant variable on the standard
errors of the estimated coefficients. The formulae for the standard errors
of regression coefficients for equations with one and two independent
variables were presented in Chapter 1 (equations 1,11 and 1.12). From
these we can see, first of all, that even though when X is an irrelevant
variable E(b:) = 0, by has a non-zero standard error. The size of the
standard error will depend on the variation in X; and the correlation
between X; and X:. From equation 1.12 we can see that the greater the
value of ry, x, and the smaller the variance of X, the greater will be the
standard error of bz. This means that even though over a very large
number of samples, the average estimate of 83 would be zero, in any
specific sample we are likely to obtain a nonzero estimate. In other
words, although unbiasedness guarantees that estimates of 8; are no
more likely to be greater than zero than less than zero, it does not ensure
that individual sample estimates will equal zero exactly. Furthermore,
even though most of these estimates will be small compared to the
standard error of by, there is always some probability that a large value
will occur simply by chance.

What about the standard error of by? By comparing equation 1.11
with equation 1.12 it can be seen that if X, and X; are correlated the
standard error of by will be greater when the irrelevant variable X, is
included in the equation. The degree to which the standard error is
inflated is directly related to the size of the correlation between the
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independent variables; the more highly correlated they are, the more the
standard error of the relevant independent variable will be inflated.
‘Thus, even though the expected value of b2 is zero, and the estimate of by
is unbiased, the inclusion of an irrelevant variable that is correlated with
a substantively important variable will reduce the efficiency of the
estimate of the latter. This result can be extended directly to the case of
more than one irrelevant variable mistakenly included in a regression
equation. As can be seen from equation 1.13, the larger the degree to
which the relevant variables are correlated with the irrelevant variables,
the less efficient the estimates of the relevant variables will be. Thus, the
inclusion of irrelevant variables in a regression equation can have
serious effects on the estimation of other parameters of the model. The
only exception to this is when the irrelevant variables are totally
uncorrelated with the relevant independent variables; in this case, the
estimated parameters will be unbiased and efficient.”

The second case in specification error occurs when a variable that
should be included in the regression equation is left out. For example,
suppose the “true” model in the population contains two relevant
variables:

Y=a+f X, +6,X, e [2.3]

An investigator may instead leave out X, and try to estimate

Y=at+f,X +e [2.4]

What does this do the estimator of 8; and its standard error? The nature
of this problem can be seen more clearly when it is recognized that if
X; and X are correlated, and X, is excluded from the equation, X, will
necessarily be correlated with the error term. Because a major compo-
nent of the error term in a regression equation is the set of factors or
variables directly affecting Y that have not been included in the analysis,
X now becomes part of that set. If X, and X are correlated, X, is corre-
Jated with the error term of equation 2.4. This violates one of the major
assumptions of regression analysis as developed in Chapter 1: All in-
dependent variables must be uncorrelated with the error term. With this
assumption violated, the Gauss-Markov theorem no longer guarantees
that the OLS estimators of the parameters will be unbiased.

In fact, it can be shown (see Rao and Miller, 1971: 62) that the
expected value of b; from eguation 2.4 is no longer Bi. Instead,

E(,}=8, +6,b,, [2.5]
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where bz is the slope coefficient that would be obtained if X, were
regressed on X;. What we estimate then is not 8, the parameter of
interest, but a value different from that by an amount equal to the
product of the effect of X3 on Y in the population and the size of the
relationship between X; and X, in the sample. This result can be
extended in two ways. First, if there are other independent variables in
the regression equation in addition to X; and X3, for example,

Y=atf X +6,X, +,X 4. 45X +e [2.6]

and X is left out of the equation when it is estimated, then the expected
value of by can be given as (see Rao and Miller, 1971: 62)

E(b) =8, * 8,513, x [2.7]

where b, 5, is the partial slope coefficient of X, in a regression in which
X, is the dependent variable and all the other variables X5, X., ..., Xcare
included as independent variables, And, if two or more variables that
are correlated with X, are left out of the analysis, b, will be biased by the
sum of a series of terms, each equal to the product of the regression
coefficient for an excluded variable and the size of the relationship
between the excluded variable and X, (Rao and Miiler, 1971: 62).

What is happening when a relevant variable is excluded from the
estimation of a regression model is that the variables left in the regres-
sion equation that are correlated with the excluded variable will pick up
some of the impact of the excluded variable on Y. The result is biased
estimators of those variables left in the equation. The direction of the
bias (positive or negative) will depend on both the direction of the effect
of the excluded variable on the dependent variable, and the direction of
the relationship between the included and excluded variables. The
magnitude of the bias depends directly on the relationship between the
included and excluded variables: The more highly related the variables
are, the greater will be the bias. This is also important because it shows
that bias will only occur if the excluded variable is correlated with an
included variable. Specification error will not be a problem if the
included and excluded variables are independent; in this case, the esti-
mates of partial slope coefficients for included variables are unaffected
by the presence or absence of the excluded variables.

The effect of excluding a relevant variable on the standard errors of
partial slope coefficients for included variables is oddly counterintuitive.
Rather than inflating the standard error, excluding a variable from the
equation will typically reduce the standard errors of estimates of the
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variables remaining. This occurs because the standard error of a
coefficient tends to increase as the magnitude of its correlation with the
other independent variables increases. Once more, note that the amount
the standard errors decrease will depend upon how highly the excluded
variable was correlated with the remaining variables. Of course, one
should not take comfort in the fact that dropping a variable willimprove
the efficiency of the remaining estimates. The “improvement” is bought
only at the price of biasing those estimates.

An IHustration of Specification Error:
Satisfaction with Life

In order to illustrate the effects of specification error we will consider
the following model:

Y=o+ B X, +8,X, +B,X, +8,X, +8,X, +e [2.8]

where the dependent variable (Y) is a summary measure of satisfaction
with life (coded 1 to 20 with 20 indicating highest satisfaction), X; is
family income in thousands of dollars, X, is a measure of occupational
prestige (0 to 100), Xs is years of education, X is frequency of atten-
dance at religious services, and Xs is size of current residence coded in
units of 100,000 population. As the “population” for the analysis we
have drawn a subset of 665 cases from the 1978 General Social Survey of
the National Opinion Research Center. Three of the independent vari-
ables in this model are highly intercorrelated (rx,x, = .73, 1x;x; = .37,
I'x,x; = .58), whereas X and X; are virtually uncorrelated with each
other and with the other three independent variables. OLS regression
shows that the coefficients for this model in the “population™ are

Y = 10,51 + 065X, + 011X, +.116X, + 265X, — 056X, +e [29]

In this example we wish to demonstrate the effects of specification
error in a sample of size 50. Although in most instances a researcher
would have to be content with a single random sample, we drew 100
different random samples of size 50 in order to more clearly illustrate the
effects of specification error on the unbiasedness and efficiency of OLS
estimates. As noted in Chapter 1, if a coefficient estimator is unbiased,
the mean value of the coefficient estimate over an infinite number of
repeated random samples from the population equals the population
coefficient precisely. Similarly, the mean value of the coefficient esti-
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mate over 100 random samples should be approximately equal to the
population coefficient.

Part (i) of Table 2.1 shows the results of estimating equation 2.8 in the
100 samples. As can be seen, the means of the estimates of the partial
slope coefficients across the samples (in column 2) do indeed come very
close to the coefficients derived from the “population” (in column 1).
Although the means of the estimates are almost exactly on target, the
estimates from the 100 samples vary quite widely. In fact, for the
samples of size 50, the standard deviation of the partial slope coefficient
estimates for each independent variable is larger than the mean value of
the coefficient estimates.

But suppose that instead of estimating equation 2.8, income (X)) is
left out the model and

Y=oty X, +8, X, +8,X, +8,X; +e (2.10]

is estimated instead. Because X; is highly correlated with both X; and
X3, both of these variables should now be correlated with the error term
of equation 2.10. Thus, the estimators for these two variables should be
biased. On the other hand, X, and X; are only slightly correlated with X,
so their estimators should not be substantially biased by the exclusion of
Xi. The results of estimating this model in each of the 100 samples is
shown in part (ii) of Table 2.1. The means of the estimated coefficients
show that these expectations.are correct. The mean estimate for 8.
(occupational prestige) is almost 3 times the corresponding population
coefficient, and the mean estimate of 8; is inflated by 40 percent. On the
other hand, the mean estimates for 8 and Bs are still very close to their
corresponding population values.

Finally, let us consider the effects of estimating a model with X4
excluded:;

Y=a+ﬁIX1+,62X2+{33X3+35X5+e [2.11]

In this case, the excluded variable, X4, is virtually uncorrelated with the
other four independent variables so the estimates of these parameters
should not be affected. Part (iii} of Table 2.1 shows that this is exactly
the case. Even though X. is very clearly an important predictor of Y, its
exclusion from the model does not cause the mean value of the partial
slope coefficient estimates of the other independent variables to deviate
substantially from their corresponding population values. These two
examples show quite clearly that the impact of specification error
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depends upon the relationships between the excluded variables and
those left in the model. Where the correlation is high, the included
variables become correlated with the error term and the estimates of
their parameters become badly biased.

Detecting and Dealing with Specification Error

The most important thing to recognize about specification error is
that, to a substantial degree, it cannot be dealt with at the level of data
analysis. Specification error is at heart a question of whether the regres-
sion equation corresponds to the process being modeled and estimated.
This means that an investigator needs a sufficiently well-developed
theory to know which variables should be in the equation and a set of
indicators that measure those variables. In particular, there is no clear-
cut way of knowing, after the fact, that a substantively important
variable has been excluded from the analysis, At first glance, it might
seem that a low R® is a dead give away of specification error. It is
tempting to argue that the reason there is so much variance in the
dependent variable left to be explained is that important independent
variables have been left out. Although in many cases this may be true, a
low R* does not necessarily indicate that theoretically relevant inde-
pendent variables have been excluded. At least two other factors may
also contribute to a low explained variance: There may be substantial
amounts of measurement error in the variables (see Chapter 3) or the
functional form of the equation may be misspecified (see Chapter 6). As
will be seen, both of these problems will contribute to a low R* and,
therefore, the meaning of low goodness-of-fit is at best ambiguous. The
only sure way to demonstrate the existence of an excluded variable is for
a theory to point to the relevant variable that may then be measured and
added to the empirical analysis.

Statistical techniques are a bit more helpful in detecting irrelevant
included variables. It was previously shown that the expected value of
the partial slope coefficients of irrelevant variables is zero. However,
because the standard error of the coefficient will not be zero, a nonzero
parameter estimate will usually be obtained. In most cases, however, the
estimate will be small with respect to its standard error and a test of
statistical significance will fail to reject the null hypothesis that the
population parameter equals zero. But again, some care must be exer-
cised before concluding that a variable with a nonsignificant partial
slope coefficient is an irrelevant variable. As will be seen, factors such as
measurement error and multicollinearity can also lead to a coefficient
that is small with respect to its standard error. Rao and Miller (1971)
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suggest that a somewhat more sensitive test is to examine the adjusted
explained variance, R?, If this does not decrease when the variable in
quesiton is removed from the equation, it is clearly not playing any role
in reducing the error variance and would therefore seem to be irrelevant.
In addition, if a variable is truly irrelevant to the analysis, its removal
should have no effect on the estimates of the variables remaining in the
equation. As in the case of excluded variables, the best guide to whether
avariable is irrelevant is theory. Evenif all of the above criteria are met,
a variable that seems to have theoretical significance should be retained
in the analysis and not dropped for empirical reasons.

3. MEASUREMENT ERROR

Measurement error is one of the most important methodological
problems facing the social sciences, and it can have a major impact on
the estimation of regression coefficients in otherwise well-specified
models. There is a tendency to think of measurement error as an all or
nothing problem. This is very misleading, however. No measure is ever
perfect; the question is how much error is present and what impact it will
have on the analysis of the data.

What exactly is measurement error? Although a full discussion of this
topic is beyond the scope of this monograph (see Carmines and Zeller,
1979), we can distinguish two types of measurement error: random and
nonrandom. In both cases it is necessary to distinguish between true
variables and indicators. A true variable is the theoretical concept we
wish to measure. In many cases in the social sciences, the true variable
will be unobservable—for example, people’s attitudes and personality
characteristics and nations’levels of economic development and democ-
ratization. Indicators, on the other hand, are the empirical observations

- we have made to measure the concepts. Nonrandom measurement error
occurs when we are to some degree systematically measuring some other
variable(s) in addition to-the true variable of interest. This is funda-
mentally an issue of validity. Clearly, if the measures used in a multiple
regression analysis are tapping variables other than those of interest, the
coefficient estimates will be biased and very difficult to interpret. In this
chapter, however, we will be dealing with the problem of random
measurement error. Random measurement error is just that: error
introduced into indicators that is unsystematic noise. Random error
may be introduced into measures for any number of reasons, Where
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data is collected from human respondents, there may be guessing
involved.or the response categories may be vague or not weil defined. In
other cases, there may be errors in recording data, or even mistakes in
coding and keypunching. More basically, random error may intrude
because we are trying to measure an unobservable or abstract concept
with a simple observable property.

More precisely, we can establish a measurement model in which the
indicator (measured variable) is a function of the true variable and a
random error term:

Xr =X +u, [3.1]

where X* is the indicator, X is the true variable, and u is the error
term. In order to simplify things a bit, we can assume that the error
term is “well behaved”; formally, the assumption of randomness of
the error term means: u has a mean of zero [E(u) = 0], is uncorrelated
with X [COV(X;, 1) = 0], and is also uncorrelated with the error term of
the regression equation in which X is included [COV(w, ¢) = 0]. The
reliability of a measure (denoted rxx) is a ratio of the true score variance
to the total variance of the indicator:

S S
Ixx = 37 % 2 142 [3.2]
Sy X

More simply, the reliability of an indicator is the proportion of
the variance of the indicator that reflects the true variable. A well-
known result of measurement theory is that the presence of random
measurement error substantially attenuates correlation coefficients (see
Carmines and Zeller, 1979). We will show that random error has a
substantial effect on multiple regression analysis that is less predictable
than its effects on correlation coefficients.

Consequences of Measurement Error

The first question we deal with is: What happens when the dependent
variable in a regression analysis is contaminated with random error? As
can be easily shown, random error in the dependent variable is absorbed
in the error term and increases the variance of the error term in the
equation. Consider the following model:

Y=a+f X +8,X,+.. .+ X te [3.3]
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However, assume that instead of measuring Y, we have measured Y*,
where

YE=Y+u [3.4]
1n effect, then, we are really estimating
Yetu=a+h X +tb,X, *... tb X te {3.5]

However, this can easily be reexpressed as

Ye=at+b X, +b,X, ¥ ... +b. X, *(e—~u) [3.6]

Because ¢ and u are empirically indistinguishable (both are random
error terms), and VAR(e - u) = VAR(e) + VAR(u), the equation in-
volving Y* will simply have a larger variance of the error than the
equation involving Y. What will this do to the estimates from the
equation? The most obvious result is that the explained variance R* will
be lower as a result of measurement error in the dependent variable,
On the other hand, because we have assumed that the measurement
error in the dependent variable, u, is uncorrelated with the error term
for the equation, ¢, the partial slope coefficient estimators will remain
unbiased. The estimators are, however, less efficient. Looking back at
the formula for the standard error in equation 1.13 it can be seen that
the standard error of b; increases directly with increases in the error
variance of the equation. Thus, even though the estimators of the partial
slope coefficients from equation 3.6 are unbiased, their standard errors
may be large and thus it will be more difficult for estimates to achieve
statistical significance.

The situation is more complex when there is measurement error in
one or more of the independent variables. Let us first consider the case
of random measurement error in the independent variable of a bivariate
regression equation. The equation we wish to estimate is

Y=at+tfXte 3.7}
But instead of measuring X, we have X*, where
X*¥=X+u {3.8]
In our sample, therefore, we are really estimating

Y=atbXt+e [3.9]
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Given the assumptions we have made about the random error term, u, it
can be shown that the magnitude of E(b) will be less than B. In
particuiar,

E(b)=8 -5 3.10]
Sy s

Looking back to the formula for reliability in equation 3.2, it can be seen
that with random error in X*, the expected value of b will be the product
of f times the reliability of X* (rxx):

E(b) = Bry [3.11]

This shows clearly how badly biased a bivariate regression coefficient
estimator will be in the presence of random measurement error.
Measures are often considered “good” in the social sciences when their
reliability approaches the level of .8. Even in this case, however, the
slope coefficient will be attenuated by 20 percent. As reliability declines
to .5 we are estimating a regression coefficient that is half of the
true value,

As we move from the bivariate to the multivariate case, the impact of
measurement error in the independent variables becomes much more
unpredictable. It is still possible to derive formulae for the expected
values of the regression coefficients in terms of the true population
parameters and the reliabilities of the variables. However, as Bohrnstedt
and Carter (197]) have shown, in the multivariate case it is no longer
assured that regression coefficient estimators will be attenuated in mag-
nitude by random measurement error. Rather, depending on the relia-
bilities of the independent variables and the correlations among the
variables, the coefficient estimators may be biased either upward or
downward, and often by substantial amounts.

Although the formuta for the estimator of the partial slope coefficient
in the presence of measurement error for the general multivariate caseis
quite complex, it is useful to see the estimators for the partial slope
coefficients in the case of two independent variables measured with
random error, Assume we have the following model:

Y=a+g,X, +5,X, +e [3.12]

But instead of measuring X, and X, we measure X} and X} where
X=X, +u, X3 =X, + u,, and where u, and u, represent random
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measurement error. As shown by Bornstedt and Carter (1971), the
estimators can be expressed as

3 -

T r oy !t 7T
b o sy | Txaxtyx, T Ty, X x,
! S2 r T - 1’2
X, L fxoxxx, TRy
(3.13]
2 [T %, Fyx, " Ty, Tx,x, |
_ 1%y YXy 1 %1%,
b= 2
s Ty o T -1
X L UXXTRX XX

Even in the case of just two independent variables, the estimators for the
partial slope coefficients can be seen to be a very complex function of the
reliabilities of the independent variables and the correlations among the
variables. Thus although it is at least possible in the bivariate case to
know that the regression coefficient is being underestimated by some
amount when there is measurement error, no such assurance is possible
when estimating a multiple regression equation. And, in the multi-
variate case, the amount of bias due to random measuretnent error is not
only a function of the reliabilities of the independent variables, but the
correlations among them as well,

Where measurement error is present in an independent variable that
is uncorrelated with all other independent variables in the model, the
impact on the coefficient for that variable is exactly the same as the
bivariate situation: The partial slope coefficient estimator is attenuated
by an amount equal to 1 minus the reliability of that variable. Further-
more, the partial slope coefficient estimators for the other independent
variables remain unbiased. In the most general situation, however, all
one knows is that estimated regression coefficients will be biased when
measurement error is present. The direction and magnitude of the bias is
usually unpredictable.

One thing that is definitely predictable about the impact of measure-
ment error is that it decreases the goodness-of-fit of the regression. This
was demonstrated earlier in this chapter for measurement error in the
dependent variable and it holds as well for error in the independent
variables. A simple way to understand this is to see that measurement
error generates a component of the variance of the variables in the
equation that is random. Because random variation is unrelated to all
other variables it will account for none of the variance in the dependent
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variable. Thus, even if a regression equation does not suffer from
specification error, it is still possible to produce an R? that is
considerably less than one because of measurement error in the
variables.

An Mustration of Measurement Error;
Satisfaction with Life

In order to show some of the effects of measurement error on the
coefficient estimates in muitiple regression, we will again use the
example introduced in the last chapter in which the dependent variable,
Y, is satisfaction with life. Recall that there are five independent vari-
ables in the model, income (X,), occupational prestige (X:), education
{X3), attendance at religious services (X4), and population size of current
residence (Xs). As before, we will estimate the coefficients of each of the
models in 100 random samples of size 50. In order to show the effects of
random measurement error we have created two new variables: an
indicator of income (X3} and an indicator of attendance at religious
services (X3) both of which contain a random error component suffi-
cient to produce reliability coefficients of .60 with respect to the original
variables.

Let us first consider the case in which we estimate a model with the
contaminated religion variable, X3:

Y=a+b, X, +b,X, +b,X, +b, X} +b X  +e [3.14]

Recall from the last chapter that religion (X4) is virtually uncorrelated
with the other independent variables. Part (i) of Table 3.1 compares the
results of estimating this equation in the 100 random samples to the
population coefficients of equation 2.9, Asis clear from a comparison of
columns 1 and 2, the impact of the measurement error in X 4 is substan-
tially restricted to the coefficient estimates for that variable. The mean
value of the 100 estimates for 84 is now reduced to 59 percent of its true
value in equation 2.9. Because the reliability of the religion indicator is
.60, this result is exactly what is expected as a consequence of equation
3.11. Thus when random measurement error is present in a variable that
is uncorrelated with the other independent variables in a multiple
regression equation, the effect is very similar to random error in the
bivariate case: The parameter estimate is biased downward by an
amount equal to the reliability of the variable. The estimates of the other
partial slope coefficients, however, remain unbiased.
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‘Now let us consider a model in which income (X;) is measured with
the contaminated indicator X7:

Y=ath X} +0,X, +b,X, +b,X, +b,X, +e [3.15]

This case differs from that examined in equation 3.14 as income is
correlated substantially with both occupational prestige (X2) and educa-
tion (X1). As can be seen in part (ii} of Table 3.1 the impact of measure-
ment error in the income variable is very different from measurement
error in the religion variable. Specifically, the average value of the 100
estimates of the partial slope coefficient for X (in column 2) is now 40
percent of the population value (in column 1) even through the relia-
bility of the measure is .60. In addition, the average estimates of the
partial slope coefficients for X; and X3 are both substantially off target;
in this example, however, both these-variables are measured without
error. It shouid be clear, then, that random measurement error in a
multiple regression model can have major effects on the estimation of
the parameters,

Detecting Measurement Error

The appropriate time to investigate the presence of measurement
error is before a regression equation is estimated. Once the coefficients
for a regression equation have been estimated, there is no way of
discovering whether or not measurement error has biased the estimates.
But before a regression analysis is begun there are several procedures
that can be used to detect measurement error; which is appropriate will
depend upon the type of data that one is using. We do not have the space
to discuss all of the relevant techniques here. Interested readers should
consult a standard reference source on reliability assessment (see, for
instance, Carmines and Zeller, 1979), or the literature on the use of
multiple indicators of variables to detect measurement error of various
sorts (see, for example, Suilivan and Feldman, 1979).

Dealing with Measurement Error

When still in the design stage of a research project the best advice that
can be given for dealing with the problem of measurement error is to
attemnpt to reduce it at the source. Strategies of data collection and
coding should be designed to minimize the intrusion of random error,
Where possible, multiple indicators of a concept should be collected so
that estimates of measurement error can be obtained and scales con-
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structed to produce more reliable measures (see Mclver and Carmines,
1981). Of course, for those doing secondary data analyses, the number
of indicators of a concept will usually be determined for the researcher.
Moreover, even when great care is taken when collecting data and
constructing indicators it will be impossible to completely eliminate
random error from the variables. It is therefore important to know what
can be done about the effects of measurement error at the data analysis
stage.

As noted above, it is possible to derive estimators for the partial slope
coefficients in a multivariate modet in the presence of random measure-
ment error if the reliabilities of all the variables are known. In this
situation it is therefore possible to derive unbiased partial slope coeffi-
cient estimators by using the formulae of equation 3.13, or a more
general formula for more independent variables with estimates of the
reliabilities (see Johnston, 1972: 281-291). This is easier said than done,
however. The formula for the partial slope coefficient in the presence of
measurement error is complex and unwieldy with just a few independent
variables. Also, although one can obtain unbiased estimators in this
manner, computing standard errors for the resulting coefficient esti-
mates is often a complex process (see Warren, White, and Fuller, 1974,
Achen, 1978).

A more useful procedure for dealing with measurement error in
multivariate regression equations is instrumental variables. An instru-
mental variable for an independent variable X is one that is correlated
with X; but has no effect on the dependent variable except an indirect
effect through Xi. An instrumental variable thus has no direct effect on
the dependent variable, nor is it correlated with any other independent
variables not included in the regression equation. This in effect requires
that the instrumental variable be uncorrelated with the error term in the
regression equation. If one or more variables satisfying these conditions
can be found and can be measured with little or no error, the instru-
mental variable(s) can be used to derive estimates of the partial regres-
sion coefficient that aré unbiased in large samples. (Estimators that are
unbiased in large samples are known as consistent estimators; see
Kmenta, 1971: 162-171).

The logic of using instrumental variables is to derive an estimate of
the partial slope coefficient B; for the variable X; purged of the random
error cornponent that is biasing the estimate. Assuming that the instru-
mental variable is unrelated to the random error term, we can use it to
estimate the systematic component of X;. Using this estimator in place of
X% in the regression equation provides a consistent estimator of the
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pattial stope coefficient. In practice, this requires a two-stage regression
analysis. In the first stage we regress X’} on the instrumental variable(s).
From the results of this regression we then compute the predicted
values, X#, and use this in the original regression equation in place of X*.
More formally, let us consider the general multivariate regression case
where instead of measuring X; we have an indicator confounded by
random measurement error, X]. If Z is an instrumental variable for X3,
then first regress X} on Z:

*=atbZte [3.16]
The estimates from equation 3.16 are then used to generate predicted
values, X’{, for X’I, which are then used in place of the original indicator
in the actual regression model:

. k
Ye=a+h X'+ Z bX. te {3.17]
1771 =z 1

If the conditions for an instrumental variable have been met by variable
Z, equation 3.17 will provide a consistent estimate of the partial slope
coefficient, Bi1, as well as the coefficients for the other independent
variables,

For an example of the use of instrumental variables to deal with
measurement error we turn to a model estimated by Hanushek and
Jackson (1977: 242). They estimated a three-independent variable
model where the dependent variable is vote choice in the 1964 Presiden-
tial election (1 = Johnson, 0 = Goldwater),” X is evaluations of perceived
party positions for several issues, X, is party identification (on a scale
from strong Republican io strong Democrat), and X; is party identi-
fication for those who were indifferent to the parties on the issues.* The
estimates of this model using OLS were

¥=07+ 39X, + 61X, +.12X, [3.18]

Because there is reason to believe that the independent variables
contain some degree of random measurement error, the estimates in
equation 3.18 may be biased. To deal with this, Hanushek and Jackson
(1977} needed to find instrumental variables for the three independent
variables, This was accomplished by using a series of demographic
variables and social background factors (income, religion, age, educa-
tion, parental party identification, race, region of the country, and
union membership). A strong argument can be made that these vari-
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ables affect vote choice only through issue evaluations and party identi-
fication and therefore should be uncorrelated with the error term in the
regression equation. Moreover, they should be measured with consider-
ably less error than the three attitudinal variables in equation 3.18.
Using the two-stage instrumental variables procedure, they reestimated
the vote choice model with the following resuits:

¥ =-07+ 90X, + 31X, + 26X, [3.19]

Comparing equation 3.18 with equation 3.19 shows that the estimates of
the coefficients changed dramatically when the instrumental variables
procedure was emnployed. The estimate of the effect of issue evaluations
on vote choice was reduced by about 55 percent, although impact of
party identification almost doubled. This again is suggestive of the
impact that random measurement error can have on OLS estimates.
{For other examples of the use of instrumental variables in dealing with
measurement error, see McAdams, 1984).

Although the use of instrumental variables will provide unbiased
estimators in large samples even when independent variables are con-
taminated by random measurement error, there are considerable
problems in using this approach. First, it is often difficult to find
appropriate instrumental variables in a particular analysis, The condi-
tion that the instrumental variable be related to Xi but not have a direct
effect on the dependent variable except indirectly through Xi is very
often hard to satisfy. Second, even if the appropriate instrumental
variable(s) can be found, they must be measured with considerably fess
random error than the suspect independent variable or little will be
gained. If the instrumental variables are measured with error, the two-
stage procedure will simply substitute one source of random error
for another.

A third problem with the instrumental variables procedure is that it
tends to produce less efficient estimators of the partial slope coefficients.
Thus, although this procedure will produce estimators that are unbiased
in large samples, the standard errors of these estimates will be inflated.
Moreover, it can be shown that the size of the standard errors will
depend directly on the correlation between the independent variable and
the instrumental variables. As the correlations decline, the standard
error will increase (see Blalock et al,, 1970). This means that for efficient
estimation it is necessary to find instrumental variables that are as highly
correlated as possible with the suspect independent variable. Finally, it
is also important to consider what will happen if the instrumental
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variables procedure is used when the conditions for instrumental vari-
ables are not met. Blalock et al. (1970} have shown that when the
instrumental variables are correlated with the error term in the regres-
sion equation, the instrumental variables estimator is often more badiy
biased than the OLS estimator with measurement error in the in-
dependent variable. Using instrumental variables to deal with the
problem of measurement error can thus be risky unless there is a great
deal of confidence in the assumptions that underlie the procedure.

An alternative way of dealing with the problem of measurement error
when there are multiple measures of the variables in the analysis is the
use of multiple indicator models. These models are able to take advan-
tage of the information in the multiple measures of the variables to
produce estimators of the coefficients of the model free from the effects
of measurement error. These models can also be very flexible in dealing
with both random and nonrandom measurement error. We do not have
the space to develop the logic behind multiple indicator models here.
Interested readers may consult Sullivan and Feldman (1979) and Long
(1983) for an introduction to such models.

4. MULTICOLLINEARITY

In this chapter, we examine the problems created when multivariate
regression analysis is characterized by multicollinearity. In doingso, we
distinguish between perfect collinearity and less extreme forms of multi-
collinearity. Perfect collinearity exists when one of the independent
variables in a regression equation is perfectly linearly related to one or
more of the other independent variables in the equation. For example,
in a model with four independent variables—X;, X3, X3, and Xs—there
would be perfect collinearity if

X, =(2.8)X, | [4.1]

or

X, =(3.62)X, +(62)X, +8 [4.2]

Alternatively, perfect collinearity is the situation in which there is some
independent variable X; that when regressed on the other independent
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variables in the model yields an R” of precisely 1.00. The reason these
two definitions of perfect collinearity are equivalent is that this R’
equals 1.00 if and only if X; is perfectly linearly related to a subset of the
remaining independent variables.

We saw in Chapter 1 that perfect collinearity violates the assumptions
of the regression model, What, specifically, is the problem? In a nutshell,
with perfect collinearity, the regression surface is not even defined, as
there are an infinite number of surfaces that fit the observations equally
well. We can illustrate this problem by looking at a graph of the case
with two independent variables—X; and X;. We assume that X is
linearly related to X; in a sample. For specificity, say X, = (1.5)X: +3, as
reflected in Figure 4.1(a). So instead of having observations for a range
of points in the X; - X; plane, we only have observations for points on
the X2 = (1.5)X; + 3 line in the X, - X; plane. This means that all Y obser-
vations would fall on the vertical plane above this line, as sketched in
Figure 4.1{b). And because all the points fall on this plane, we could use
the least squares criterion to fit a line (denoted L) to the points, such that
line L is contained in the vertical plane, as in Figure 4. 1(b). But because
regression analysis with two independent variables is equivalent to
fitting a plane in three-dimensional space, we can see that a unique
regression plane would not be defined in this situation. Indeed, any of
the infinite number of planes which contain the fitted line L would fit the
observations equally well. Two such planes (labeled I and 2) are
sketched in Figure 4.1(c).

Thus, in the general case, with perfect collinearity among a set of
observations, an infinite number of regression surfaces fit the obser-
vations equally well, and therefore, it is impossible to derive unigue
estimates of the intercept and partial slope coefficients for the regression
equation. Fortunately, perfect collinearity is rarely found in social
science research. Practically speaking, the only situation in which one
risks perfect collinearity is with a very small data set. Indeed, one must
avoid using regression analysis when the number of independent vari-
ables is greater than or equal to the number of cases in the sample, as
such situations necessarily lead to perfect collinearity.

For the rest of this chapter, we assume that we are dealing with a less
extreme case of multicollinearity—a case in which the independent
variables in a regression equation are intercorrelated, but not perfectly.
But before we examine the effects of “less than perfect” multicol-
linearity, several general points should be made. First, multicollinearity”
is a problem referring to correlated independent variables in a specific
sample of data, and not in the overall population. If social scientists
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Figure 4.1: A Depiction of the Problem Resulting from Perfect Collinearity
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could collect data using controlled experiments, the observations could
be selected so that the independent variables would not be strongly
related in the sample, and the multicollinearity problem would not be
faced. Typically, however, such sampling is not possible, and thus
independent variables may be highly correlated in a sample. Second,
note that—setting aside the case of perfect collinearity—even a high
degree of multicollinearity does not violate the assumptions of regres-
sion. The recognition that no assumptions are violated tells us that OLS
slope coefficient estimators remain BLUE even when high multicol-
linearity is present. In particular, regression coefficient estimators are
still unbiased. But multicollinearity poses other problems—problems
that are the subject of the next section. Third, muiticollinearity should
not be conceived as something that either “exists™ or “does not.” Rather,
multicollinearity exists in degrees, and the degree determines how
important a problem is posed. When multicollinearity is present in only
a very small amount, there is little reason to be concerned about its
impact, but as the degree of multicollinearity increases, its consequences
become more pernicious.

Consequences of Multicoilinearity

We have seen that unless there is perfect collinearity in a data set, the
assumptions of regression are not violated, and therefore OLS co-
efficient estimators remain unbiased, and in fact are still BLUE. Thus
even with high multicollinearity, OLS coefficient estimators have min-
imum variance among the class of unbiased estimators. Unfortunately,
with high multicollinearity, “minimum variance” does not mean low
variance, as multicollinearity influences the variance of the estimated
regression coefficients. We can see this by looking at the formula for
calculating the standard error of the partial slope coefficient estimator
in equation 1.13. The greater the correlation between independent
variable X; and the other independent variables (i.e., the greater the
value of R?), the smaller the value of the denominator in the formula,
and thus the larger the value of the standard error of bi. Thus, in general,
the standard errors of regression coefficient estimators increase as the
correlations among the independent variables increase. And this is quite
plausible. Partial slope coefficients represent the effect of one inde-
pendent variable on the dependent variable with all other variables held
constant. But when the independent variables in an equation are highly
correlated, it is impossible to separate out the effect of one—with all
others held constant—with any degree of precision. In any event,
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because multicollinearity increases the standard errors of coefficient
estimators, the major effect of multicollinearity is on significance tests
and confidence intervals for regression coefficients, When high multi-
collinearity is present, confidence intervals for coefficients tend to be
very wide, and t-statistics for significance tests tend to be very small.

The degree of concern that one should show for these consequences
of multicollinearity depends on the purposes for which regression co-
efficients are being estimated. For example, if the major purpose of
regression is to use information about cases having known values for a
dependent variable to predict values for the dependent variable for
observations with unknown values, the large standard errors resuiting
from high multicollinearity are generally of little consequence, as there
is no need to separate out the independent effects of the correlated
independent variables. Of course, if one expects the high degree of
multicollinearity to disappear for the observations for which one will
use the estimated regression coefficients for prediction, then the multi-
collinearity does pose problems,

If the goal of regression is explanation rather than prediction, the
consequences of high muiticollinearity are of more concern. Butinsome
special situations, we can safely ignore multicollinearity even when
explanation is the purpose. Consider, for instance, a model with three
independent variables (X;, Xz, and X), where ry; is close to 1.00in value,
but where 113 and r12 are both equal to zero. If our only interest is
estimating B8 (for X)), the multicollinearity due to the high correlation
between X, and X5 would not cause problems, Estimates of 82 and 83
would vary considerably from one sampie to another, but the larger
variance for these estimators would not affect the variance of the esti-
mator of B, as X, is completely uncorrelated with both X; and X;. by
would have the same value whether we include both X, and X; in the
model, or just one of X; and Xs. Note, however, that if we were to drop
the assumption that X, is uncorrelated with X, and with X3, the situa-
tion would change radically. In this case, the variance of b, would be
larger as a result of the high correlation between Xz and Xa.

Although large standard errors for coefficient estimators is a major
consequence of multicollinearity, there is no guarantee that, if we find
coefficient estimates with large standard errors, it is a consequence of
multicollinearity. Indeed, there are several causes of high standard
errors. They can resuit from a small sample for estimation, or from
variables with small variances in the sample. Thus, researchers should
avoid the temptation to capitalize on multicollinearity as an excuse for
coefficients that are not statistically significant, Large standard errors
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may be caused by high muiticollinearity, but might also be a result of
other factors.

What distinguishes the impact of multicollinearity from that of a
small sample, or from that of small variances for variables, is a second
consequence of high multicollinearity—large covariances between co-
efficient estimators. In general, the larger the correlations among the
independent variables in a regression equation, the larger the corre-
lations among the OLS partial slope coefficient estimators. In fact, for
a model with just two independent variables (X and X»), it turns out
that the correlation between estimators by and b; is-rx, x,, the inverse of
the correlation between the two independent variables. Thus, we can see
that when two independent variables in a regression equation are highly
and positively correlated, their slope coefficient estimators are going to
be highly and negatively correlated. When, for a given sample, by is
greater than 8;, by will tend to be less than 8,; and when, for a different
sample, b1 is less than B, b, will tend to be greater than .. This, of
course, implies that conclusions drawn about the relative impacts of the
two independent variables on the dependent variable based on coeffi-
cient estimates from one sample are very shaky.

Detecting High Multicollinearity

Because—except for the extreme case of perfect collinearity—the
issue is never one of multicollinearity either “existing” or “not existing,”
there are no tests that provide irrefutable evidence that multicollinearity
is or is not a problem. But there are several warning signals that there
may be a problem, and tests that provide information for making an
informed judgment about the degree to which multicollinearity is
present. One common warning signal that high multicollinearity is
present is all individual partial slope coefficient estimates failing to be
significantly different from zero, although the overall equation shows a
good [it to the data. A common rule of thumb is that multicollinearity
should be suspected when none of the t-ratios for the regression coeffi-
cients for independent variables is sufficiently large to indicate statistical
significance at the .05 percent level, yet the F-statistic for the full model
{equation 1.19) is significant. Furthermore, clues about the degree to
which multicollinearity is a problem can also be obtained by examining
the stability of coefficient estimates across different samples, or slightly
different specifications of a model using the same sample. When high
multicollinearity is present, switching samples, changing the indicator
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used to measure a variable in the regression model, or deleting or adding
a variable to the equation can all lead to dramatic changes in the size of
coefficient estimates. If any of these warning signals suggest that multi-
collinearity may be a problem, several more direct diagnostic tools can
be used.

The most commonly used test for multicollinearity is the inspection
of a matrix of bivariate correlations. Here one examines the correlations
between all pairs of independent variables, and concludes that multi-
collinearity is not a problem if no correlation exceeds some predefined
cutoff value—typically around .80. But this test is unsatisfactory for
several reasons. First, it is possible that a severe multicollinearity
problem may not be reflected in bivariate correlations; one independent
variable may be approximately a linear combination of several other
independent variables in the model, yet that variable may not be highly
correlated with any other single independent variable. Second, it is very
difficult to define a cutoff vatue that will always be appropriate. In some
situations (e.g., with a very small sample) a single bivariate correlation
among the independent variables of .70 could have very serious conse-
quences for estimation, whereas with a larger sample, a correlation of
.85 might pose fewer difficulties. Thus one always needs to look at the
standard errors of slope coefficient estimates, the width of confidence
intervals, and the purposes for which the analysis is being performed to
assess how much of a problem multicollinearity poses.

A preferable test for multicollinearity can be developed by recog-
nizing the meaning of perfect collinearity; a situation in which regressing
one independent variable on the rest produces an R* of 1.00. The most
reasonable test for multicollinearity is to regress each independent
variable in the equation on all other independent variables, and look at
the Rs for these regressions; if any are close to 1.00, there is a high
degree of multicollinearity present.’ This test is superior to the exami-
nation of bivariate correlations, as the user will never mistakenly reject
the possibility of severe multicollinearity because the pattern of inter-
correlation is not reflected in the bivariate correlations. Also, when high
multicollinearity turns out to be present, the R” technique clearly identi-
fies the source of the problem, by pinpointing which independent vari-
ables are approximately linearly related to others. Unfortunately, using
R’s instead of bivariate correlations does not overcome the difficulty in
defining how high the correlations must be before multicollinearity
should be viewed as a source of concern; again, this will vary from one
situation to the next.
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An THustration of Multicollinearity:
Satisfaction with Life

To show more clearly the problems associated with high levels of
multicollinearity, we return to the illustration developed in Chapters 2
and 3. In this example {equation 2.8), a measure of satisfaction with life
is predicted by five independent variables: income (X), occupational
prestige (X3), years of education (X3), frequency of attendance at re-
ligious services (Xs), and population of current residence (Xs). As shown
in Chapter 2, there are fairly high correlations in the population among
three of the independent variables (X, X, and X3) whereas X4 and X
are relatively independent of each other and the other three independent
variables. What are the effects of these large correlations when esti-
mating partial slope coefficients from a sample?

We should first consider the detection of multicolinearity. Table 4.1
shows the bivariate correlations among the five independent variables
for one of the 100 samples drawn, 1t is clear that income, occupational
prestige, and education are highly correlated in this sample. However,
the full magnitude of the multicollinearity is not apparent from the
bivariate correlations. In the last column of the table, we show the R
from regressing each of the independent variables on the other four. An
inspection of these coefficients shows how severe the multicollinearity
is. Although the largest of the squared bivariate correlations among the
five independent variables is .38 [= (.62)"] the R” for occupational
prestige (Xo) is .71, for income (X1) .62, and for education (X3} .56. On
the other hand, less than 10 percent of the variance in religion (X4} and
population (Xs) is accounted for by the other four independent variables.

Although there is clearly a great deal of multicollinearity among X,
X, and Xs, we have noted that multicollinearity does not bias the esti-
mators of partial slope coefficients in a regression model. Thus if we
were to estimate

Y=atp X, +8,X, +8,X,+8,X, +8.X, te [4.3]

in each of the 100 samples, the mean value of ¢ach parameter estimate
should be very close to its corresponding population value. In fact, this
was already demonstrated in part (i} of Table 2.1. This table shows that
even in the presence of substantial multicollinearity, the average esti-
mates of the partial slope coefficients (in column 2) are very close to the
population values (in column 1). However, it is also apparent that the
values of the parameter estimates vary considerably across the samples.
In fact, for X,, Xz, and X;, the standard deviations of the 100 partial
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TABLE 4.1
Bivariate Correlations Among the Five Independent Variables in
Equation 2.8 for a Single Random Sample, and R*-Values when
Regressing Each Independent Variable on the Other Four

Variables X, X, Xy X, X R?
Income (X} 1.00 .62
Occupational prestige (X,) 62 1.00 g
Education (X,) 54 S0 1.00 56
Religious attendance (X;) 07 A2 14 1.00 06
‘Population (X;) 08 17 22 =05 1.00 .09

slope coefficient estimates are more than iwice the size of the cor-
responding population coefficients. This reflects the fact that in the
presence of multicollinearity, although partial slope coefficient esti-
mators remain unbiased, they are inefficient.

Moreover, as shown in Table 4.2, there are quite substantial negative
correlations among the estimates of the partial slope coefficients across
the 100 samples. In particular, there is a correlation of —.64 between the
estimates for income (X)) and occupational prestige (X:)—a value
expected given the high positive correlation between X and Xo. This
illustrates that not only are the estimators of the partial slope coeffi-
cients inefficient, but the deviations of individual estimates from the
population values are systematic: When the estimate for income (b)) in a
sample is Jarger than the population value, the estimate for occupational
prestige (by) in that sample tends to be Jess than the population value,
and vice versa.

The effects of high multicoilinearity can also be seen in parts (ji) and
(iii) of Table 2.1. In part (ii), we estimated equation 4.3 in each of the 100
samples with one of the collinear variables, income (X1), dropped from
the model. Comparing column 6 in parts (i} and (ii) of the table shows
that the standard deviations of the estimates for occupational prestige
(X2} and education (X;) across the 100 samples are substantially reduced
when income is dropped from the model. For example, the standard
deviation of the estimate for B is reduced 28 percent (from .254 to .186).
On the other hand, the standard deviations of the estimates for religious
service attendance (X4) and population size (Xs) are largely unchanged
when income is dropped. This again fits our expectations as both
religious service attendance and population size are only slightly corre-
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TABLE 4.2

Bivariate Correlations Among Estimates of Partial Slope Coefficients
for Equation 2.8 Across 100 Different Random Samples

Variables b, by by by by
Income (b} 1.00

Occupational prestige (b,) -, 04 1.08

Educational (by) —~41 -.37 1.00

Religious attendance (by) w2 - 09 .07 1.00
Population (bg) .04 .02 .03 .23 .00

lated with income, and thus the standard errors of their partial slope
coefficient estimators should be largely unaffected by the presence or
absence of income in the equation. Finally, part (iii} of Table 2.1 shows
the reestimates of the multiple regression model, this time with religious
service attendance (Xa) dropped from the equation. A comparison of
column 6 in parts (i) and (iii) shows that the deletion of X4 has almost no
effect on the standard deviations of the partial slope coefficient esti-
mates for the other independent variables.

Dealing with Multicollinearity

If extreme multicollinearity is detected, what is to be done? Unfor-
tunately, multicollinearity is a problem resulting from insufficient
information in the sample, and short of increasing the information
available, there are few reasonable courses left. Thus the best solution
for multicollinearity is to obtain more information. If it is possible to
increase the sample size, this certainly should be done. As can be seen
from the formula for the standard error of the partial slope coefficient
estimator in equation 1.13, when the sample size (n) is increased (while
all other factors in the formula are held constant), the standard error
decreases, thereby offsetting the effect of multicollinearity.

But note that increasing the sample size does not always resuit in a
decrease in the standard error. In some situations, increasing the sample
size might result in an increase in the correlations among the inde-
pendent variables (and thus an increase in R? in equation 1.13). If this
were the case, standard errors could wind up increasing with the larger
sample. Thus, some new data are better than others for overcoming
multicollinearity. New observations that have values for the inde-
pendent variables that deviate from the approximate linear relationship




47

among the independent variables are the best. For example, with multi-
collinearity approximating the perfect linear relationship between X,
and X reflected in Figure 4.1(a), new observations in the shaded regions
of the graph would be better than ones near the line X3 = (1.5)X + 3. In
any event, although increasing the sample size is the best approach when
high multicollinearity is present, it is not generally feasible. Presumably,
an analyst would use all data available in the first place for estimnating
regression coefficients, and then if muiticollinearity were a problem,
there would be no additional data to which to turn.

A second alternative for increasing the amount of information (when
no other observations can be added) is to use knowledge about the
values of the regression coefficients themselves. For example, if one
knows from prior research (or at least, one is willing to assume) that the
population coefficients for two independent variables that are highly
correlated have a particular ratio, it is possible to use this information to
overcome extreme (even perfect) multicollinearity. Consider, for
instance, the model

Y=a+§ X, +8,X, te [4.4]

where the independent variables have a sample correlation near (or even
equal to} 1.00, but where previous research tells us that

B./B,=c [4.5]

where ¢ is a known constant. With this knowledge, we can substitute cf2
for B in equation 4.4, and obtain

Y=a+CpX, +5,X, te 4]
This equation can be rewritten as
Y=atg,X te 4.7
where
X, =cX tX, [4.8}
Consequently, we can now use OLS regression to estimate the

coefficients—a and f—of equation 4.7, where we calculate the X,
values of observations by the formula in equation 4.8. Finally, the
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estimate of B2 can be used along with equation 4.5 to derive an estimate
for ..

Another situation in which we can use prior knowledge to overcome a
multicollinearity problem is when we have a prior estimate of the partial
slope coefficient for one or more independent variables in a regression
model. For instance, with a two-independent variable model, where we
have a reasonable estimate of the coefficient for X, from another source,
we could use this information to help estimate the coefficient for X2.° Of
course, it is rare that we have reliable knowledge about either the ratio of
two regression coefficients or the value of one or more coefficients. But
if additional information in one form or another is not available, the
possible options for dealing with multicollinearity are limited and
generally unsatisfactory.

One of these options is to combine two or more independent variables
that are highly correlated into a single variable-—such as a weighted or
unweighted average of the original variables—and then use the com-
posite variable in place of the correlated variables in the regression.
Unfortunately, this approach is only reasonable when the original
model is misspecified. In other words, the approach is only appropriate
when the variables combined into a composite are multiple indicators of
the same underlying theoretical concept. Indeed, if they are multiple
indicators, their composite is likely to be a more reliable indicator of the
concept than any one indicator alone (Carmines and Zeller, 1979). Butif
the correlated independent variables are merely multiple indicators of
the same concept, then the original regression model would have
inappropriately included several variables representing the same con-
cept, and thus the original model would be misspecified. In any event,
unless the variables that are highly correlated can be viewed as indi-
cators of the same theoretical concept, creating a composite variable to
avoid high multicollinearity is not well advised.”

Another strategy commonly suggested as a way of overcoming multi-
collinearity is to delete from the equation the variable that is causing the
problem. But if cach variable in the original equation is an indicator of a
distinet theoretical concept, it is a poor idea to delete any of the
variables. The reason is that although it is a simple matter to remove a
variable from a regression model, it is not so easy to delete the concept
the variable is measuring from the theory underlying the regression.
Assuming that the original model were well specified, the revised model
would be misspecified. And, in general, the consequences of model
misspecification—biased coefficient estimators—are more serious than
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those of multicollinearity. Indeed, it turns out that the higher the corre-
lations among the independent variables in a regression, the greater the
degree of estimator bias resulting from deleting a variable from the
model. We can see this easily in the two-independent variable case.
Chapter 2 shows that when the true equation is

Y=a+p X, +8,X, te [4.9]

yet Xz is left out of the estimation equation, the expected amount of bias
in the least squares estimator of 1 is Babai (see equation 2.5). But ceteris
paribus, the greater the correlation between X and X, the greater the
value of bz, and thus the greater the amount of expected bias. Conse-
quently, in terms of the amount of bias created, the worst possible time
to delete a variable from an equation is precisely when that variable is
highly correlated with the other independent variables in the model. Of
course, in a perverse twist, this is the same time that the unsophisticated
analyst is most likely to delete a variable.

Given the shortcomings in these approaches for dealing with multi-
collinearity, on many occasions—when it is impossible to obtain more
information—the most reasonable course when faced with high multi-
collinearity is to recognize its presence, but live with its consequences.
Unfortunately, when muiticollinearity is extreme, we must simply
accept that the data available do not contain sufficient information to
obtain estimates for individual regression coefficients that yield narrow
confidence intervals. One reasonable alternative in such situations is to
employ joint hypothesis tests, in which the null hypothesis would be that -
the partial slope coefficients for all variables in a set of highly correlated
independent variables are zero. This test can be performed using the
F-statistic of equation 1.22, where Xy, . . . , Xy, would represent the
highly correlated set of variables.

It is quite common in situations of extreme multicollinearity among a
set of variables that individual regression coefficient estimates may be
statistically insignificant, although the null hypothesis that ail coeffi-
cients for the set of variables are equal to zero may be easily rejected.
This is illustrated in Figure 4.2. It contains a diagram of the typical
elliptical-shaped joint confidence interval for the partial slope coeffi-
cients in a model with two highly positively correlated independent
variables.? Note that this elliptical-shaped joint confidence interval does
not contain the origin of the graph. Thus, in this case, we would reject
the null hypothesis that both 8: and B. equal zero. However, the
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Figure 4.2: A Typical Joint Confidence Interval for the Partial Slope Coefficients
for Two Highly Correlated Independent Variables X, and X,

confidence intervals for the individual siope coefficients (inarked nextto
the axes) both contain zero. Consequently, we could reject neither of the
two separate null hypotheses: (i) 81 =@, and (i} 82 = 0.

We can illustrate the use of the joint hypothesis test with the model
explaining satisfaction with life. Earlier in this chapter, we selected one
of the 100 samples and showed that multicollinearity among income
(X:), occupational prestige (X3), and education (X;) is severe. Esti-
mating the regression equation for this sample yields

¥=1939 + 031X, + 008X, + 266X, +.324X, - 103X, [4.10]

(246) (089)  (033) (240) (195 (057)

where the numbers in parentheses are the standard errors of the coeffi-
cient estimates. These standard errors indicate that none of the
individuat partial slope coefficient estimates are statistically significant
at the .05 level. But the set of independent variables X, X, and X are
“jointly significant,” as the F-test of formula 1.22 shows the null
hypothesis that 81 = 82 = B3 = 0 easily rejected at the .05 level. In this case,
R*=.24,r=3,k=2,n=50, R =.05, and thus F = 3,44, with 3 degrees of
freedom in the numerator and 44 in the denominator,
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5. NONLINEARITY AND NONADDITIVITY

Recall that in the regression model, we assume that for each set of
values for the k independent variables, (Xy;, X3, . . ., Xgj), the mean of
the distribution of Y; falls on the surface

B(Y)= ot B, X +6,X, + ... X (5.1]

The assumptions of linearity and additivity are both implicit in this
specification. Linearity is the assumption that for each independent
variable X;, the amount of change in the mean value of Y associated with
a unit increase in X;, holding all other independent variables constant, is
the same regardless of the level of X;, In equation 5.1, this constant
change is Bi—the partial slope coefficient for X;. In contrast, if for any
independent variable X; in a model, the change in the mean value of Y
associated with a unit increase in X varies with the value of Xi, we say
that X; is nonlinearly related to the dependent variable. Thus the rela-
tionship between X; and Y sketched in Figure 5.1(a) is nonlinear, as the
slope of the E(Y) curve[i.e., the ratio of the change in E(Y) to the change
in X; resulting from a small increase in Xi] varies depending on the level
of Xi; a small increase in the value of X; is associated with a larger
increase in E(Y) when X, = 3.0 than when X; = 5.0.

The additivity assumption is also implicit in the assumption of the
regression model that the means of the Y; distributions fall on the
surface of equation 5.1. Additivity is the assumption that for each
independent variable X;, the amount of change in E(Y) associated witha
unit increase in X; (holding all other independent variables constant) is
the same regardless of the values of the other independent variables in
the equation. Indeed, it is the assumption of additivity that allows us to
interpret partial slope coefficients as representing the change in the
expected value of Y associated with a unit increase in X holding all other
variables constant, without specifying at which constant values the
other independent variables are being held; the change in E(Y) is the
same regardless. In contrast, if the slope of the relationship between X
and E(Y) varies with the values of other independent variables, the
model is called nonadditive or interactive, For example, in a model with
independent variables X, and Xo, if the relationship between E(Y) and
X, is reflected in Figure 5.1(b) by line 1 when X; = 0, by line 2 when
X2 = 1, and by line 3 when X; = 4, the model would be nonadditive.

The meanings of nonlinearity and nonadditivity are often confused,
likely for two reasons. First, both nonlinearity and nonadditivity refer
to a situation in which (contrary to the assumption of the regression
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Figure §.1: Hiustrations of Nonlinear and Nonadditive Models

model) the relationship between an independent variable and a de-
pendent variable varies according to the context. So there is this similar-
ity. But the similarity is limited, as with nonlinearity, the relationship
between an independent variable and the dependent variable varies with
the level of rhat independent variable; whereas with nonadditivity, the
relationship between an independent variable and a dependent variable
varies with the level of other independent variables.

A second reason for possible confusion is that similar techniques are
generally used to modify the regression model to accommodate non-
additivity and nonlinearity. We will see that many nonlinear or nonad-
ditive specifications can be converted to linear/additive form by per-
forming transformations on the variables in the model, For example, if
Y is related to X, by the equation

E(Y) = o+ B X2, [5.2]
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and the refationship between the variables is therefore nonlinear, we can
define a new variable Z by Z; = X3};. Then, the new variable Z is linearly
related to Y, and OLS regression analysis can be used to estimate the
coefficients of the model. With equation 5.2, we say the relationship
between Xy and E(Y) is nonlinear in terms of the variables, but linear in
terms of the parameters. And, indeed, there are numerous types of
specifications that are nonlinear and/or nonadditive in terms of the
variables, but both linear and additive in terms of the parameters. Given
appropriate transformations of the variables, all these specifications can
be converted into models for which coefficients can be estimated using
OLS regression. This chapter will examine several of these specifi-
cations. Of course, there are an infinite number of alternative interactive
and nonlinear specifications that are nonlinear or nonadditive in terms
of both variables and parameters. Unfortunately, coefficients for such
models can not be estimated using OLS regression even with pre-
liminary transformations. Instead, maximum likelihood estimation
procedures are needed-—procedures that are beyond the scope of this
monograph.”

Detecting Nonlinearity and Nonadditivity

The best way to detect both nonlinearity and nonadditivity is to use
the theory underlying the model being developed to determine the
hypothesized form of the nonlinear or nonadditive relationship, specify
a model reflecting this form, and estimate its parameters; the statistics
accompanying the regression then provide evidence about whether the
hypothesis is true. The key question one must ask in deciding if there is
reason to expect nonlinearity or nonadditivity is whether for each
independent variable the slope of the relationship between the de-
pendent variable and the independent variable can be expected to vary
depending on the “context.” If theory suggests, for example, that the
ratio of the change in E(Y) associated with a small increase in X,
depends on the value of X;, a nonlinear specification is required. Similar-
ly, if theory suggests that the change in E(Y) associated with a small
increase in X, depends on the level of another independent variable, an
interactive model is called for.

But the decision that 2 nonlinear or nonadditive specification is
required is only the first step. The next question is what type of non-
linearity or interaction can be expected. With respect to nonlinearity in
the relationship between X, and E(Y), questions like the following must
be asked: Can the slope of the relationship between X, and E(Y) be
expected to have the same sign for all values of X7 If not, at what level of
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X can the sign be expected to switch from positive to negative? Should
we expect the magnitude of the slope to increase as X, increases, or
decrease as X: increases? Or perhaps as X, increases, the slope will
increase over a certain range of X, values but decrease over other ranges.’
If the slope does increase over a range of X values, does it increase ata
greater, lesser, or steady rate as the level of X increases? Indeed, an
extremely useful technique when nonlinearity is expected is to use the
answer to questions such as these to sketch the expected relationship
between the dependent variable and each independable variable
{holding all other independent variables constant) on graphs. Then once
the expected relationships are clarified in this manner, an analyst can
seek a mathematical specification that reflects them.

The same types of questions can be used to discern the form of the
interaction expected. The only difference is that this time, we pose
questions about how the slope of the relationship between an inde-
pendent variable and the dependent variable can be expected to change
as the values of other independent variables change. The answers to
these questions alert us to the type of interaction expected; then we are in
position to seek a mathematical equation that reflects this type. We
stress, then, that the first step in detecting nonlinearity and nonadditivity
should be theoretical rather than rechnical. Once the nature of the
expected nondinearity or nonadditivity is understood well enough to
make a rough graph of its form, the technical work should begin. Later
in this chapter, we examine several different kKinds of mathematical
specifications that can be used to model a variety of types of nonlinearity
and nonadditivity.

But there are techniques that can be used to detect nonlinearity and
nonadditivity even when the precise nature of the relationship can not be
anticipated beforehand. For a bivariate model, the sitplest initial test
for nonlinearity is to examine a scatter diagram of the sample relation-
ship between the independent and dependent variables. Sometimes,
nonlinearity will be sufficiently striking so that it is clearly evident that
the curve that best fits the points on the graph does not take the form of a
line. However, a more rigorous test is available. This involves dividing
the cases into several subsamples, where each subsample includes a
range of values for the independent variable. Then, if regression on each
subsample separately generates slope and intercept estimates that differ
substantially across subsamples, the relationship between the two vari-
ables is nonlinear.

In fact, an equivalent test can be carried out with a single regression
equation using dummy variables. Assume we have a sample of n cases,
and wish to test for nonlinearity in the relationship between X and Y.
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Figure 5.2: An IHustration of a Test for Nonlinearity

We could divide the sample into three subsamples as depicted in Figure
5.2. The subsamples consist of cases having X values in the three ranges:
(1) less than X', (2) greater than X’ but less than X”, and (3) greater than
X*, Then, a test for nonlinearity could be performed by estimating
coefficients for the regression model

YJ. =gt BXJ. T, Zli + 72223 + 73(X521§) + 74(Xj.221) te [5.3]
where

Zy = 1 if observation j is in subsample 1, and 0 otherwise, and

Z = 1 if observation j is in subsample 2, and 0 otherwise.

Note that for cases in subsample 1 (i.e., when Z;; = 1 and Zs; = 0), regres-
sion equation 5,3 reduces to

Yj =a+BXj tv, +3r3Xj te
Slaty)t@Fy)Xte [5.4]

For cases in subsample 2 (i.e., when Zy = 0 and Zy; = 1), the regression
equation becomes

Yj =(a+72) +(ﬁ+74)xj + € [5.5]
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Finally, for cases in subsample 3 (i.e., when Z,; = Zy; = 0), equation 5.3
reduces to

Y=ot fX +e [5.6]

If the relationship between X and Y were linear (over the range of the
three subsamples together), the slopes and intercepts for equations 5.4,
5.5, and 5.6 must be identical (in contrast to the nonlinear relationship
depicted in Figure 5.2), and thus 4, 2, 3, and s must all equal 0. Thus
a test of linearity can be performed by testing the null hypothesis

Ho:'yl:'yzﬁysﬁumo {5.7]

against the research hypothesis that Ho is not true. The appropriate test
of significance here is the F-statistic of formula 1.22, where R is the
multiple correlation coefficient for full equation 5.3, R, is the muitiple
correlation obtained when Y is regressed on X alone, r=4, and k= 1. The
F distribution has 4 degrees of freedom in the numerator and (n - 6) in
the denominator,

Clearly, the choice to use three subsamples in the test for linearity was
arbitrary, and the same type of test can be applied using any number of
subsamples (less than n/3). In general, if the sample is divided into n;
subsamples, n, ~ 1 dichotomous variables must be created, and 2(n, - 1)
terms will be included as independent variables in the test regression
along with X. The formula for calculating the F-statistic for testing the
null hypothesis of linearity is again an adaptation of formula 1.22, where
R is the multiple correlation for the full regression equation, Ry, is the
multiple correlation for Y regressed on X, r = 2(n;—1), and k = 1. Of
course, the arbitrary nature of the choice about the number of sub-
samples is a limitation of the technique, because the number selected can
greatly influence whether the null hypothesis will be accepted or rejected.
Indeed, when the sample size (n) is very large, and the sample is divided
into a large number of subsamples, it is “very easy™ to reject the null
hypothesis of linearity. So when working with a large sample, an analyst
must be careful to keep the number of subsamples established small
enough so that the nuil hypothesis will not be rejected when the degree of
deviation from linearity is substantively trivial. However, when working
with a sample small enough so that n, is large relative to n, it is
“extremely difficuit” to reject the null hypothesis-of linearity, and a test
may fail to reject “linearity” even when there are substantively meaning-
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ful shifts in the slope of the relationship between X and E(Y) over the
range of X.

The same procedure can be modified to test for nonadditivity. For
instance, assume we want to test the nuil hypothesis that the independent
variables X and X; have additive effects on Y. We would divide our
sample into subsamples based on the values of the cases for one of the
independent variables—say X;—-and run regression on a model con-
taining the independent variable X and terms including dichotomous
variables based on the values of X;. Indeed, if three subsamples are used,
equation 5.3 would be the test regression model estimated, and the nuil
hypothesis expressed as equation 5.7 would be the hypothesis of no
interaction between X and X;. Equation 1.22 would also hold as the
formula for calculating the F-statistic for the test of significance.

Dealing with Nonlinearity

When the analyst is convinced—based on theoretical or empirical
evidence—that relationships among variables in the model being ex-
amined are nonlinear, attention must focus on finding a mathematical
specification consistent with the type of nonlinearity expected. Most of
the infinite number of nonlinear specifications are nonlinear in terms of
both variables and parameters—and thus can only be reasonably
estimated using maximum likelihood procedures. But there are a variety
of nonlinear specifications that are linear in terms of parameters, and for
which OLS regression can be used following an appropriate trans-
formation of the original equation. There are such specifications for
models in which the slope of the relationship between X and E(Y)
changes sign one or more times as the value of X increases. There are
also specifications that assume the slope of the relationship between X
and E(Y) maintains the same sign but either increases or decreases in
magnitude as X increases.

The polynomial model. One nonlinear specification that is linear in
terms of parameters is the polynomial model. It is appropriate for
models in which the slope of the relationship between an independent
variable X; and E(Y) is thought to change sign as the value of X in-
creases. For many such models, the relationship between X, and Y can
be accurately reflected with a specification in which Y is viewed as a
function of X; and one or more powers of X, as in

Y=atp X, +5,X +8,X ... B X[ te [5.8]




i “where m is referred to as the order of the equation, and is an integer

greater than 1. The graph of the relationship between X; and E(Y) ex-
pressed by this equation consists of a curve with one or more “bends,”
points at which the slope of the curve changes sign. The number of bends
in the curve is determined by the order of the equation. Indeed, the
number of bends nearly always equals m - 1.** Thus, a polynomial
model for m = 2 generally takes the form of the graph in Figure 5.3(a),
while one for m = 3 typically looks like the graph in Figure 5.3(b).
The parameters of model 5.8 can easily be estimated by defining the
powers of X; as distinct variables, in essence, letting X = X3, X5=X3,,...,
and Xm = X Then OLS regression can be applied to the equation

Y=at+tf X +8X, +.. . +8 X +e [5.9]

Several comments about polynomial models are in order. First, note
that the independent variables in equation 5.9 are each mathematically
defined as functions of a single conceptual variable. Because these
variables are not linearly related, the analyst need not worry about
perfect collinearity. But nonetheless, it is possible that the independent
variables could be highly correlated. So when employing a polynomial
model, it is wise to check for multicollinearity using the techniques
presented in Chapter 4. Second, note that one can modify the specifi-
cation of equation 5.8 to accommodate multiple conceprual variables.
For example, one can include a second concepiual variable that is
assumed to be linearly related to E(Y) by adding an independent variable
Xatoequation 5.8, or a second conceptual variable that is assumed to be
nonlinearly related to Y by adding terms for X and one or more of its
powers. Finally, the analyst must be careful in interpreting the estimated
coefficients for polynomial models. The typical interpretation of a
partial slope coefficient as representing the change in E(Y) associated
with a unit increase in an independent variable when all other variables
are held constant makes no sense with a polynomial model, as it is
impossible for an independent variable to change its value while its
powers are held constant. So, one must interpret regression coefficients
for polynomial models by describing the slope of the relationship (and
how it changes) over key ranges in the value of the conceptual indepen-
dent variable. For example, one useful statement describes the values of
the independent variable over which the mean of Y increases as the
independent variable increases, and the mean of Y decreases as the
independent variable increases. For a polynomial model of order 2

Y=a+p,X +8,X te [5.10}
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the slope of the curve at any specific value of X;—say X}—can be
determined by the formula!!

slope at X} =B, +28,X] [5.11]

Given this, one can easily solve for the value of the independent variable
at which the slope equalis zero:

0=p, +28,X [5.12]

This implies that for the model of order 2, the slope of the relationship
equals zero at the value of X, equal to -1/ 2B,. Of course, the value of
the independent variable at which the slope equals zero is precisely the
value at which the curve “bends” from positive slope to negative slope,
or vice versa.

For an example of a polynomial mode}, we examine Hibbs’s (1973)
analysis of the relationship between economic development and do-
mestic instability. Hibbs argues that domestic violence should increase
across nations from low to middle levels of economic development but
decrease from middle to high levels, as a result of the affluence accom-
panying high levels of industrialization. Thus, the slope of the relation-
ship between level of development and level of domestic violence should
be positive at low to middle ranges of development but negative at
higher ranges. Hibbs specifies this hypothesis using a polynomial model
of order 2. He also includes population as an independent variable
hypothesized to be linearly and positively related to the level of violence.
Then, measuring level of domestic violence by a composite index of
collective protest (Hibbs, 1973, Chap. 2) and economic development by
the natural logarithm of energy consumption (in ten million metric tons
of coal equivalents) per capita, he uses OLS regression to obtain the
following coefficient estimates:

¥ =-706+176X, — 151X} + 627X, [5.13]
(53) (048)  (13)

where Y = level of domestic violence, X, = level of economic develop-
ment, X3 = population, and the values in parentheses are standard errors
of the partial slope coefficient estimates. Analysis of these coefficients
(using formula 5.12) shows that the curve expressing the relationship
between X, and Y has slope zero at X, =-1.76/2(-.151) = 5.83. This sug-
gests that nations having a value of 5.83 on the measure of economic
development can be expected to have the greatest amounts of domestic
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violence, with violence and development positively related below 5.83,
and negatively related above 5.83.

The exponential model. Other nonlinear specifications are appro-
priate when the slope of the curve representing the relationship between
X and E(Y) never changes sign, but increases or decreases in magnitude
as the value of X changes. One such specification is an exponential
model of the form

Y = aX’e [5.14]

Such models—when graphed—take the form of a curve that passes
through the origin (i.e., the point X = 0, Y = 0) and has a slope that
gradually either increases or decreases in magnitude depending on the
value of B [see Figure 5.3(c)]. If B is greater than 1.00, the slope increases
as X increases; if P is less than 1.00, the slope decreases as X increases. In
particular, one can demonstrate with calculus that the slope of this
exponential model at any value, X', of X is given by the formula

slope at X' = af(X)¥1 = gY'[X' [5.15]

where Y’ = aX’8. This implies that—in contrast to a linear relationship
between X and E(Y)in which every unit increase in X is associated with a
constant change in E(Y)—every one percent increase in X is associated
with a constant percentage change in the mean value of Y. Economists
generally refer to the percentage change in E(Y) associated with a one
percent increase in X as the elasticity of E(Y) with respect to X. Thus the
model of equation 5.14 is one with constant elasticity of E(Y) with
respect to X. In particular, the elasticity of equation 5.14 s 8; every one
percent increase in X is associated with a B percent change in the
expected value of Y.

To estimate the coefficients of equation 5.14, one transforms it by
taking the logarithm of both sides:"

log ¥ =log ot Bllog X) +loge [5.16]

Following the transformation, the equation is in linear form; and the
coefficients can be estimated by regressing log Y on log X using OLS.
This generates unbiased estimators of § and log a. Finally, the latter can
be used to calculate an estimator of o by taking the antilog of the
estimator of log o.
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Note that the assumption made about the error term in exponential
mode! 5.14 is different than the assumption in the basic regression
model. In order for the error term in transformed equation 3.16 to take
the additive form required for OLS estimation, the error term in the
original specification must be multiplicative, as in equation 5.14. This
means that instead of assuming that the error term in the model has a
mean of zero, we assume that the log of the error term has mean zero: for
each value of X, E(log ¢) = 0. This assumption is equivalent to an
assumption that for each value of X, the expected product of the error
terms g is equal to 1. This is because in the exponential model, the error
term is not the additive deviation of Y, from the mean value of the
distribution of Y; as in equation 1.3; instead the error term ¢; is the ratio
of Yjto aXff

Butler and Stokes (1969) develop an exponential model in a study of
the electoral alignment of social classes in Britain. Based on the assump-
tion that individuals perceive and tend to conform to the political norms
of their community, Butler and Stokes (1969: 144-150) contend that the
greater the proportion of a parliamentary constituency that is middle
class (as opposed to working class), the greater the likelihood that a
middle-class voter in that constituency will vote for the Conservative
party and against the Labour party, and thus the greater the proportion
of middle-class voters voting for the Conservative party. Furthermore,
they contend that the relationship between the proportion of a con-
stituency that is middle class (to be denoted X) and the proportion of
middle-class voters in the constituency voting Conservative (to be
denoted Y) should not be linear. The change in Y associated with a
constant increase in X is predicted to decrease in magnitude as X
increases from 0.00 to 1.00, because once the middle class forms a
majority of a constituency, the marginal impact of additional middle-
class citizens on the likelihood of a middle-class citizen voting Conser-
vative is fairly small. Based on this expectation, Butler and Stokes
estimate the coefficients for an exponential model of the form of equa-
tion 5.14 using data from 184 parliamentary constituencies, and derive
the following results:

Y= 97x% [5.17]

These results provide an estimate of the elasticity of E(Y) with respect to
X. Every one percent increase in the proportion of a constituency that is
middie class is associated with a .27 percent increase in the expected
proportion of middle-class voters voting for the Conservative party.
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We can also use equation 5.15 to estimate the slope of exponential
model 5,17 at any value of X, For example, the slope at X = 10is 141,
whereas the slope at X = .50 is .44, This means that a unit increase in the
proportion of a constituency that is middle class is associated with an
increase of 1.41 in the proportion of middle-class voters supporting the
Conservatives when the constituency is 10 percent middle class, but only
an increase of .44 when the constituency is 50 percent middle class.

The hyperbolic model. Another nonlinear specification is a Ayper-
bolic or reciprocal model. It takes the form

Y=a+8(1/X)+e [5.18]

and when graphed, produces a curve in the form of Figure 5.3(d). The
most distinctive feature of the hyperbolic model is that as the value of X
gets infinitely large, the expected value of Y approaches . When 8 is
negative E(Y) is always less than «, but approaches « asymptotically
from below; when B is positive, E(Y) is always greater than ¢, but
approaches « from above., One can verify this asymptotic behavior by
examining the formula for the slope of the curve at a particular value,
X, of X:

slope at X' =—p/ X" [5.19]
Clearly, as X’ gets infinitely large, so does the denominator in equation
5.19; thus, as X increases, the magnitude of the slope gradually
decreases, eventually approaching zero, The hyperbolic model can be
transformed to a model! linear in form very easily by defining a variable
Z, such that for every observation,

zZ,=1/X, [5.20]

Then, unbiased estimators of the parameters of equation 5.18 can be
obtained by using OLS regression on the model

Y=at+flte [5.21]

Another exponential model. A final nonlinear specification takes
the form

y = (ot FXre) [5.22]
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and thus is also called an exponential model. As indicated in Figure
5.3(¢), this model has a Y-intercept of e*. When 8 is positive, the curve
has positive slope throughout, but the slope gradually increases in
magnitude as X increases. When § is negative, the curve has negative
slope throughout, and the slope gradually decreases in magnitude as X
increases, with the curve approaching the X axis as Y gets infinitely
large. A key characteristic of this type of exponential model is that for
any two values of X—X’ and X"-~that are a fixed distance apart, the
ratio of the associated expected Y values—E(Y') and E(Y")—equals a
constant value. In particular, if X’ and X" are a unit distance apart
(ie., X' - X" = 1), then

B(Y)/B(Y'") = ¢ [5.23]
Furthermore, when g is positive and small in magnitude (around .25 or
less), Tufte (1974: 124-126) has shown that (8 X 100) is approximately
equal to the percentage increase in E(Y) associated with a unit increase
in X.

We can transform-equation 5.22 to one linear in form by taking the
logarithm of both sides to get

InY=a+pXte [5.24]

Then, we can estimate the coefficients of the original model by defininga
new variable Z according to the equation

Z-= In Y} [5.25]
and applying OLS regression to the model
Z=atfXte §5.26]

Dealing with Nonadditivity

The durmmy variable interactive model. If a researcher believes that
the independent variables in a model interact in influencing the de-
pendent variable, there are several nonadditive specifications that are
linear and additive in terms of parameters, and thus—{following an
appropriate transformation—can be estimated using OLS regression.
One commonly used interactive specification is called a dummy variable
interactive model, and is applicable in a situation in which one of the
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Figure 5.4: An Hlustrative Dummy Variable Interactive Mode! in the Form of
Equations 5.27 and 5.28 (or Alternatively, Equation 5.29)

independent variables is dichotomous (i.e., has only two possible
values). In such a model, a variable X is thought to interact with a
dichotomous or dummy variable D in influencing the dependent vari-
able Y as follows: X is linearly related to E(Y) for both values of D, but
the slopes and intercepts characterizing the linear relationship differ
depending upon the value of D. If we arbitrarily label the possible values
D can take on as 0 and 1, then one example of a dummy variable
interactive model is graphed in Figure 5.4. In this model, X is linearly
- related to E(Y) (i) with a slope of B and an intercept of ao among the
" population of cases for which D = 0, and (ii) with a slope of 8; and an
intercept of @ among the population of cases for which D = 1.

~ One way to estimate the coefficients of such a model is through
contextual regression analysis. Here, we treat D=0 and D = 1 as two
separate contexts in which we assess the bivariate relationship between
X and Y. Thus, we develop two regression equations,

whenD=0: Y=q +§X+e, [5.271
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and

whenD=1: Y=a +8 X+e [5.28]

and use OLS regression separately on samples of cases for which D=0
and D = 1. Then, the research hypothesis of interaction could be tested
against the null hypothesis that 8o = Bi. A finding that the estimates of 8o
and B; differ in magnitude by a substantial amount would be evidence
that X and D interact in influencing Y.

We can also estimate the coefficients of the dummy variable inter-
active model using a single-equation model including the dummy
variable as an independent variable. This alternative specification is

Y=ot 60)((0) +8, X(l) +yD+te {5.29]

where X0 and X are variables constructed according to the following
Tules:

X(O)j =X§. if Dj =0, and
0 if D}. =15 and
o if Dj = (), and
X, if Djm}

i

[5.30]
X(l)j -

Let us examine equation 5.29 in the the two contexts (D=0and D = I)
separately. For cases for which D =0, Xy is also zero, but X = X, and
thus equation 5.29 reduces to

Y=a+tB X+e (fD=0) [5.31]

In contrast, when D = 1, Xiey = 0 but X3 = X; thus equation 5.29 takes
the form

Y=(a+ y)+,X+e (fD=1) (532

And if we let @ = oo and a + v = a1, equations 5.31 and 5.32 are identical to
equations 5.27 and 5.28, respectively (except that equations 5.27 and
5.28 contain different error terms, whereas equations 5.31 and 5.32
contain the same error term). Of course, after constructing the variables
X and X, the coefficients of equation 5.29 can be estimated using
OLS regression, and the estimates obtained would always be equivalent
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to those obtained using contextual regression analysis; & = & and

&+ v = éu. The test of the research hypothesis of interaction is also easy
to perform. To do so, the analyst must also estimate the coefficients for
the additive modelin which D and X are the only independent variables

Y=at+tX+yD+e [5.33]

using the same data. Then, the null hypothesis that 8o equals 8: can be
evaluated using the F-test of equation 1.22, where R is the multiple
correlation coefficient for the interactive model of equation 5.29, R is
the multiple correlation coefficient for the additive model of equation
533, k=2, andr=1.

The multiplicative model. Another interactive specification is gener-
ally called a multiplicative model, and is applicable when two in-
dependent variables—X, and X, both measured at the interval level—
are thought to interact in influencing Y such that the slope of the
relationship between each independent variable and E(Y) is linearly
related to the value of the other independent variable. The specification
takes the form

Y=at8 X +§,X, +8,(X,X,) e [5.34]
We can easily see the specific nature of interaction implied by fixing the

value of each independent variable and manipulating terms. For ex-
ample, assume that we fix X; at X'1. Then, equation 5.34 can be written

Y=o+ X, +8,X, +33X'1X2 te [5.35]
Then grouping terms gives
Y:(m-+-;3i)<'1)+(]32+,33x’1)x2 te [5.36]

Similarly, if we fix the value of X; at X"z, and rearrange terms, equation
5.34 takes the form

Y-—~(:;M-§2X'2)+(13i ~t-[33}v<{fz)):{1 te [5.37]
Therefore, we can see that when X» is held constant at X'z, the slope of

the relationship between X, and E(Y) is (81 + B:X"2). So, indeed, the slope
of the relationship between X, and E(Y)—holding X, constant—is
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linearly related to the value at which Xz is fixed. Similarly, the slope of
the relationship between X, and E(Y) (holding Xu constant) is linearly
related to the value at which X, is fixed.

The coefficients—e, B, B2 and Bi—of this model have clear inter-
pretations. As usual, the intercept « represents the expected value of ¥
when both independent variables (X: and X,) are equal to zero.
Furthermore, if we set Xz = 0 in equation 5.37, we get

Y=a+f X te [5.38]

Thus, we can see that 8; represents the slope of the relationship between
X, and E(Y) when X; equals zero. In a similar fashion, Bz can be
interpreted as the slope of the relationship between X, and E(Y) when X,
is held constant at zero. What about 8s? It can be interpreted in two
ways. From equation 5.37, we see that 83 equals the amount of change in
the slope of the relationship between X; and E(Y) associated with a unit
increase in Xs. For example, when X equals 3, the slope of the
relationship between X: and E(Y)is 38 + Bu. However, if X, is increased
by 1 unit to 4, the slope increases in magnitude by 8 units to a value of
48; + B1. Of course, given the symmetry of X, and X in the model, a
second interpretation of B is the amount of change in the slope of the
relationship between X. and E(Y) associated with a unit increase in X,

The coefficients for the multiplicative model can be estimated by
constructing a new variable X; according to the formula

Xq = X%y [5.39]

and then using least squares regression analysis on the equation
Y=a+f X, +6,X, t8,X, e [5.401

Unless X, and X; have a correlation of 1.00 (or unless one of the
variables is actually a constant), it is impossible that equation 5.40
would be characterized by perfect collinearity. But a high degree of
multicollinearity is possible; thus analysts using a multiplicative model
should test for high muiticollinearity using the techniques of Chapter 4,

Analysts should also be warned of an error commonly made in
interpreting the coefficient estimates of a multiplicative model. Often,
social scientists mistakenly interpret the coefficient estimates b1 and bz
as representing the “additive effects” of the independent variables, in
contrast to the estimate by, which reflects the “interactive effects.” But
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our earlier analysis of the meaning of 8; and 8> shows that this interpre-
tation is misleading, and that instead, b; and b; should be thought of as
estimates of “conditional effects”—estimates of the change in E(Y)
associated with a unit increase in one independent variable under the
condition that the other independent variable is equal to zero. Of course,
for some models, the substantive meaning of coefficient estimates might
be better conveyed by determining the “conditional effects”™ of one
variable when the other is fixed at some nonzero value. Indeed, esti-
mates of such conditional effects are easy to obtain for any fixed value of
either independent variable, The analyst need only replace the coeffi-
cients in equation 5.36 or 5.37 by their respective coefficient estimates,
and substitute the “fixed value” of interest for X’y or X'3.

Friedrich (1982) notes that the standard errors of by and bs in multi-
plicative models must also be interpreted with caution, as they too are
conditionalvalues. Thus, sy, and sy, do not reflect the general variability
of coefficient estimates, but instead the variability of the estimator (i) of
b, when X is fixed at zero, and (ii) of b2 when X, is fixed at zero,
respectively. And in general, when the variables are fixed at nonzero
values, the variability in estimates will be quite different. Thus, to be
meaningful, significance tests of the coefficients in a multiplicative
model should be “conditional”™; the analyst should determine whether an
independent variable has a significant impact on the dependent variable
at a particular value of the other independent variable. Friedrich (1982)
provides appropriate formulas for such conditional significance tests.

Lewis-Beck (1977) develops an interactive model of innovation in
Third World organizations that serves as a good illustration of both a
multiplicative specification and the use of prior knowledge to help
overcome a multicollinearity problem (as discussed in Chapter 4). His
model assumes that two factors influence the degree of organizational
innovation (to be denoted Y) of Peruvian hospitals: (1) the amount of
resources available to the organization (denoted X.), and (ii) the degree
of equality of influence in the organization (denoted X;). Furthermore,
Lewis-Beck hypothesizes that the greater the level of organizational
resources, the greater the effect of influence equality on degree of
innovation, and similarly, that the greater the equality of influence, the
greater the impact of level of resources on degree of innovation. Such a
model can be specified by multiplicative equation 5.34,

An attempt to estimate the coefficients of this model using data from
32 hospitals generated severe multicollinearity—certainly not an un-
expected problem given the small sample size.' But a return to theory
about innovation suggested a reasonable a priori expectation that the
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coefficient B.—for the influence equality (X;)—is zero. This is based on
the assumption that when organizational resources are totally absent
(i.e., X1 = 0), innovation is impossible regardless of the level of influence
equality; therefore X; has no effect on Y, and B2 equals zero. If the
analyst is willing to accept this assumption, then coefficient estimates
for B, and B85 can be derived that are more efficient than those for
equation 5.34 by applying OLS regression to the model

Y=a+p,X, +B,(X X,)te [5.41]

A nonlinear interactive model. One final specification of interest is
both nonadditive and nonlinear in nature. It is obtained by modifying
the exponential model of equation 5.14 to include a second jndependent
variable: ’

Y=aXl X2e [5.42]

In this model, the slopes of the relationships between (i) X: and E(Y) and
(ii) X7 and E(Y) each depend on the levels of both X, and X;. Calculus
can be used to determine these slopes at any given values of X, and X,. It
turns out that when X; = X'y and X; = X"z

the slope of the relationship between

rﬁl""i Xf.ﬁ‘z

X, and E(Y) = off, X )

[5.43]}
Also, because of the symmetry between Xi and X; in the model, the
slope of the relationship between X, and E(Y) at the same point is
afy Xaft XAl

Note that if we hold one of the independent variables in equation
5.42—say X.—constant, the equation reduces to one of the form of
equation 5.14. Consequently, for any fixed value of X», the relationship
between X and E(Y) refiected in equation 5.42 can be represented by a
graph with the shape of that of Figure 5.3(c). Thus, for a fixed value of
X,, when B8: > 1, the slope of the relationship between X, and E(Y)
increases as X, increases, whereas when 81 < 1, the same slope decreases
as X increases. But in addition, the greater the values of « and X%, the
greater the amount of change in E(Y) associated with a marginal change
in the Value of Xi. And because of the symmetry of X, and Xa, similar
interpretations can be derived for the nature of the relationship between
X and E(Y) when X, is held constant. Furthermore, just as in the case of
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the single-variable exponential model, the coefficients 8: and B can be
interpreted as elasticities; 8: is the elasticity of the expected value of the
dependent variable with respect to X;; B8; is the elasticity of E(Y) with
respect to Xz,

The coefficients of the exponential model of equation 5.42 can be
estimated by taking logarithms of both sides:

logY=loga+ B log X +f,logX, +loge [5.44]

This equation is in linear additive form, and thus its coefficients can be
estimated by regressing log Y on the two independent variables—log Xi
and log X;—to obtain values for log a, 81 and B2. One can then get an
estimate of o by taking the antilog of the estimate of log e. It is
important to note that, just as in the case of the single-variable exponen-
tial model, the error term in equation 5.42 is multiplicative; if this
assumption is not reasonable, the muitivariate exponential specification
is inappropriate.

Although all the nonadditive specifications we have examined con-
tain only two “conceptual” independent variables, each model can be
easily modified to specify interaction among three or more variables.
For example, one could develop an exponential model of the form

Y=aX X2 X e [5.45]
A researcher using this model, or a modified version of one of the other
interactive or nonlinear specifications, should begin by analyzing the
specific nature of the interaction or nonlinearity implied by the model.
This will involve determining the slope of the relationship between each
independent variable and the dependent variable when all independent
variables are held constant at specific values. In some cases, this analysis
can be done using simple algebra (as with equation 5.33); in other cases,
calculus is required (as with equation 5.42).

Some Warnings about Nonlinear and
Nonadditive Specifications

Analysts using the nonlinear and nonadditive specifications intro-
duced in this chapter must be attentive to several special concerns. First,
as we have seen, some of the models examined contain an additive error
term, whereas others contain a multiplicative disturbance term. Indeed,
for each specification, the choice about which type of error term to use
was determined by which type would allow ultimate estimation with
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OLS regression. Of course, this is not a theoretically appropriate criteria
for determining the specification of a model. Instead, our knowledge
and beliefs about the process being modeled should be the determining
factor. At a minimum, analysts using nonlinear and nonadditive speci-
fications should carefully consider whether the assumptions required
about the error term are consistent with the situation at hand.

A second concern is to make certain that the transformation used to
convert the original model to one in linear/ additive form for estimation
purposes is defined for all possible values of the variables. Some trans-
formations are simply undefined for certain values. For instance, the
Jogarithm of zero—and that of all negative numbers—is undefined.
Thus if a variable to be transformed by taking logarithms could take on
the value zero for some cases, the measurement scale for the variable
would have to converted before the logarithmic transformation could be
applied. In situations where measurement is only at the interval level
(and thus the zero point is arbitrary), this would not pose a problem, but
if measurement is at the ratio level, an initial transformation to change
the zero point would be inappropriate.

Finally, it is common that analysts reporting the results of nonlinear
or nonadditive models compare the goodness-of-fit for the model to that
of the linear additive model including the same variables. Althoughitis
true that the expected (or mean) goodness-of-fit for an accurately speci-
fied model is better than that for an inaccurately specified model, it does
not hold that this will be true for any sample. For this reason, we donot
think it wise to reject a nonlinear and/or interactive specification in
favor of 2 linear additive one when the former is more theoretically
compelling, simply based on a comparison of goodness-of-fit of the two
models. Nevertheless, a comparison of R? values or standard errors of
estimates across two or more specifications can give useful information.
But when making these comparisons, one must be careful that the unit
of comparison be the same across models. For example, one cannot
legitimately compare the error variance for a model in which the
dependent variable is measured in untransformed units to that fora
model in which the dependent variable is expressed in logarithmic units.
Thus, when the dependent variable of 2 nonlinear or nonadditive model
is transformed prior to estimation, one must base a measure of the
goodness-of-fit of the model on the size of regression residuals in
untransformed units. Siedman (1976) outlines a procedure appropriate
for comparing the R? value for the model of equation 5.14 to that for the
linear bivariate regression model including the same variables; the
general approach he presents can be modified to be applicable to other
nonlinear and interactive specifications.
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6. HETEROSCEDASTICITY AND AUTOCORRELATION

We have seen that the muitiple regression model requires the assump-
tions that (i) the mean of the error term equals zero—E(¢) = 0 for all j,
(ii) the variance of the error term is constant so that VAR(g) = o” for all j
(homoscedasticity), and (iii) no autocorrelation is present—the error
terms associated with different observations are uncorrelated. In this
chapter, we examine the implications of violating these three assump-
tions relating to the distribution of the error term. We also consider
diagnostic tools, and strategies for empirical analysis when the assump-
tions are violated.

The assumption that the error term has mean zero is generally the
least important of the assumptions—and an assumption that, if vio-
lated, leads only to minor problems for the analyst. Indeed, even when
the error term has a nonzero mean, the partial slope coefficient estimates
for independent variables remain BLUE. The only effect of a nonzero
mean is bias in the estimate for the intercept of the model; to be precise,
the amount of bias turns out to be the mean value of the error term, as
with a nonzero mean for e

E{(a)=a+ E(e) [6.1]

Because in most cases analysts are more interested in estimates of the
partial slope coefficients for a model, the consequences of violating the
assumption that the error term has mean zero tend to be quite minor. In
contrast, the effects of violating the assumptions of homoscedasticity
and a lack of autocorrelation are more pernicious; thus we devote the
rest of the chapter to an analysis of these problems.

When Heteroscedasticity and
Autocorrelation Can Be Expected

Heteroscedasticity refers to the situation in which—contrary to the
assumption of homoscedasticity—the error term in a regression model
does not have constant variance. An example of heteroscedasticity is
illustrated in Figure 6.1, which shows the conditional probability distri-
bution of Y for selected values of the independent variable X in a
bivariate model. In this case, the variance of the error term—instead of
being constant across values of X--pets larger as X increases; the
variance of the error term is positively correlated with the independent
variable.

There are certain types of situations in which heteroscedasticity is
iikely to be a problem. One is when the dependent variable is measured
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Figure 6.1: An Ilustration of a Heteroscedastic Error Term Distribution for a
Bivarjate Regression Model: COV[VAR(e), X] >0

with error, and the amount of error varies with the value of the in-
dependent variable. For instance, when the unit of analysis is the nation,
and data are derived from government records, it may be that some
nations keep more accurate records than others. Also, when the unit of
analysis is the individual, and data are obtained from surveys, some
respondents may provide more accurate answers than others,

Heteroscedasticity is also likely when the unit of analysis is an
“aggregate” and the dependent variable is an average of values for the
individual objects composing the aggregate units—such as the mean
income level in some aggregate unit. If the number of individuals
sampled in each aggregate unit to determine the mean income level
differs across units, the accuracy with which the dependent variable is
measured will also vary; mean income levels estimated from a large
sample of individuals will generally be characterized by less measure-
ment error than means based on a smaller sample. This assertion is
deduced from knowledge that the variance of the distribution of a
sample mean decreases as the sample size increases (Wonnacott and
Wonnacott, 1972: 120-122}.

Another situation in which heteroscedasticity can be anticipated
relates to more substantively meaningful variation in the dependent
variable. For example, consider a model in which annual family income
is the independent variable and annual family expenditures for vaca-
tions is the dependent variable. In this case, it is reasonable to expect
that for families with low incomes the mean expenditure level will be
low, and variation in expenditures across families will be quite small, as
families with low incomes must spend the bulk of their income on
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X

Figure 6.2: An Interactive Model for Which, if Z were Omitted, Regression Re-
siduals Would Have a Similar Pattern to Those for Figure 6.1

necessities thus leaving very few discretionary funds that can be spent
on vacations. But as family income increases, the amount of discre-
tionary income should rise, and as a conseguence, both the mean
vacation expenditure level and the variation in such expenditures
should increase—thereby resulting in heteroscedasticity. Note that our
expectation about the relationship between income and vacation
expenditures could be recast by suggesting that high income is a neces-
sary but not sufficient condition for large vacation expenditures. And
any time a high value for the independent variable appears to be a
necessary but not sufficient condition for an observation having a high
value on the dependent variable, heteroscedasticity is quite likely.

In cases in which heteroscedasticity is present and cannot be attrib-
uted to measurement error, the problem can often be the result of
interaction between an independent variable in the model and another
variable that has been left out of the model. For example, the hetero-
scedasticity in Figure 6.1 [with VAR(e) and X; positively correlated]
might be due to interaction between X and some variable Z (notin the
model) in influencing Y. One possibility is reflected in Figure 6.2; here, Z.is
avariable with three possible values—1, 2, and 3. When Z is fixed at any
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s of its values, the relationship between X and E(Y) is linear and the error

" term is homoscedastic, but the slope of the relationship between X and

E(Y) varies depending on the value of Z. In this case, if Z were left out of
the model, empirical analysis of the relationship between X and Y would
likely produce regression residuals with the same pattern as the model of
Figure 6.1.

An analyst examining the relationship between income and vacation
expenditures might consider the possibility that the heteroscedasticity
present is a result of interaction with a nonineluded variable. One might
argue that the amount of a family’s expenditure for vacations is deter-
mined not only by a family’s income, but by the satisfaction its members
derive from a vacation. (This is consistent with microeconomic theory,
which assumes that one’s demand for a good is determined jointly by
one’s preferences and one’s resources). And satisfaction level and
income can be expected to interact in determining vacation expendi-
tures; among families that derive little satisfaction from vacations, we
can expect income to have a weak effect on vacation expenditures, but
as the satisfaction derived increases, income can be expected to have a
stronger effect on the level of expenditures.

We can also anticipate factors that would likely result in autocorrela-
tion being present. Recall that we have conceptualized the error termin
a regression equation as representing the effects of numerous factors
that influence the dependent variable but are not explicitly included in
the model. Such omitted factors can result in autocorrelation. The most
common situation in which this happens is in time series regression in
which the observations consist of a singie individual or unit at multiple
points in time. Indeed, in a time series model if the omitted factors
constituting the error term tend to be the same for each time period,
autocorrelation will almost certainly be present.

In this monograph we concentrate on an analysis of heterosce-
dasticity, and only give brief attention to the problem of autocorre-
lation. This is not because the latter problem is less important, but
because autocorrelation is already discussed extensively in Ostrom’s
(1978) volume in this series. However, we can note that the major effects
of autocorrelation and heteroscedasticity are similar. To preview the
complications, the presence of either (i) does not result in bias in the
OLS estimators of partial slope coefficients, but (i} does increase their
variances. Also, when either is present, the standard errors of partial
slope coefficient estitnators are no longer unbiased estimators of the true
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estimator standard deviations, Consequently, tests of statistical 31gn1ﬁ—
cance based on these standard errors will be inaccurate.

Consequences of Heteroscedasticity
and Autocorrelation

Let us assume that the error term in a regression model is hetero-
scedastic, such that

VAR(e,) = sz [6.2]

This means that the variance of the error term may differ in size from
one set of values for the independent variables—(Xy;, Xy, . . . , Xig)—to
another, The first question of interest is whether this interferes with the
unbiasedness of regression coefficient estimators. And the answer is no;
even with heteroscedasticity, the OLS estimators for both the intercept
and for partial slope coefficients remain unbiagsed. Thus, on average,
OLS slope coefficient estimates are on target even with heteroscedas-
ticity. Furthermore, the same statement applies to least squares esti-
mators when autocorrelation is present.

But with heteroscedasticity—or with autocorrelation—the least
squares estimators of the intercept and partial slope coefficients are no
longer BLUE, no longer the estimators with minimum variance among
the class of unbiased estimators. This can be an important consequence
given that we typically only have one sample available for estimating the
coefficients of a regression model. Each individual OLS estimate has a
higher probability of being “off target” than an estimate derived from
the unbiased estimator with minimum variance. It turns out that with
heteroscedasticity (or autocorrelation), an estimation technique called
generalized least squares {GLS] produces the estimators that are
BLUE." Although estimation using GLS is beyond the scope of this
book, fortunately, with several specific types of heteroscedasticity, OLS
can be modified to develop a procedure called weighted least squares
[WLS] that yields estimates equivalent to GLS estimates, and thus
are BLUE,

When we use OLS coefficient estimates to test hypotheses or develop
confidence intervals about population coefficients, we must also be
concerned with whether the estimates of their variances are unbiased.
It turns out that when either heteroscedasticity or autocorrelation is
present, the traditional formula used to calculate the standard error of
coefficient estimators produces a biased estimator of the true standard
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deviation of the OLS estimators. For example, with heteroscedasticity
in a bivariate regression model, the amount of bias turns out to equal to

-n(n-l)(éli xzo.z) + (n—l)(% xr“)(ﬁ 0.2)
E(s2)~ VAR(b) = = FUNEU e

3 2\2
-l Z x;
n(n—2) jmlxj

This formula can be used to show that the direction of the bias
{positive or negative) is determined by the sign of the correlation
between the independent variable and the variance of the error term. If
xf and sz are positively correlated, the bias in the Sy is negative, and thus
s, will tend to underestimate the standard deviation of the OLS estima-
tor, b. This means that confidence intervals for B will be too narrow,
and that b may incorrectly appear to be statistically significant when
hypothesis tests are conducted. Tn contrast, when x} and o are negatively
correlated, the bias in 5y, is positive. Consequently, confidence intervals
will be too wide, significance tests for b will be too difficuit to pass, and
the OLS slope coefficient estimator will appear to be less precise than
it really is.

Bohrnstedt and Carter (1971) have surveyed a number of studies of
the severity of the consequences of heteroscedasticity on tests of statis-
tical significance. They conclude that unless heteroscedasticity is
“marked,” significance tests are “virtually unaffected,” and thus OLS
estimation and the associated formula for calculating standard errors
can be used without concern of serious distortion. But in some analyses,
heteroscedasticity may be severe. We thus turn our attention to proce-
dures for detecting marked heteroscedasticity, and estimation tech-
niques appropriate with severe heteroscedasticity. Although the conse-
quences of autocorrelation are similar to those of heteroscedasticity,
diagnosing autocorrelatior requires different procedures—those dis-
cussed well by Ostrom (1978) and Hibbs (1974).

Detecting Heteroscedasticity

If the analyst suspects marked heteroscedasticity, the first test that
should be conducted is a visual inspection of a plot of regression
residuals. The regression residual for observation j—denoted e—is
defined as the observation’s observed value on the dependent variable
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(Y;) minus its “fitted” value based on the OLS regression equation (Y)):
eijijj=Yj—(a+b]X1+b2X2+ cokbb X)) {6.4]

In particular, the analyst should examine a graph in which regression
residuals are plotted against the independent variable Xisuspected to be
correlated with the variance of the error term."” When the sample size is
large, homoscedasticity should result in an “envelope” of even width
around the horizontal axis when residuals are plotted against any
independent variable; such an “envelope” is illustrated in Figure 6.3(a).
However, when the sample size is small, even with perfect homosce-
dasticity in the error term, the variance of the regression residuals will
not be identical at all values of the independent variable. Instead,
residuals should be somewhat larger near the mean of the distribution
than near the extremes, as illustrated in Figure 6.3(b) (Rao and Miller,
1971); the smaller the sample size, the more magnitude the swelling in
the envelope of residuals around the mean. Thus, if it appears that the
residuals are roughly the same size for all values of X; (or, with a small
sample, slightly larger near the mean of X), it is generally safe to assume
that heteroscedasticity is not sufficiently severe to warrant concern.
However, if the plot of residuals shows some other type of uneven
envelope of residuals, so that the width of the envelope is considerably
larger for some values of X; than others, a more formal test for hetero-
scedasticity should be conducted. A plot reflecting a case in which the
width of the envelope is negatively related to the value of the inde-
pendent variable is illustrated in Figure 6.3(c).

Goldfield and Quandt (1965) suggest a reasonable formal test for
heteroscedasticity in which an independent variable is monotonically
related to the variance of the error term—the variance of the error term
either increases consistently or decreases consistently as Xi increases. In
the Goldfield-Quandt test, one reorders the n observations in the sample
in order of increasing magnitude on the independent variable, Xi, sus-
pected to covary with the variance of the error term. Then, one deletesa
certain number (denoted m) of “central observations,” that is, the mid-
die observation in the ordering plus an equal number of observations
above and below the middle one.’® This leaves n - m observations. Then
OLS regression is used to estimate the coefficients of the original model
for (i) the first (n — m)/2 observations and (ii) the last (n — m)/2
observations, separately. If we denote the sum of the squared residuals
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NOTE: (a) Homoscedasticity with a large sample; (b) Homoscedasticity with a small
sample; and (c) Heteroscedasticity,

Figure 6,3: Illustrative Plots of Regression Residuals
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for the former regression by ESSuw, and the sum of the squared residuals
for the latter regression by ESSyg, the value

F =ESS_ _ [ESS [6.5]

high
is an F statistic given the null hypothesis that the error term is homo-
scedastic and the research hypothesis that the variance of the error term
is an increasing function of X;; similarly

Fyy = BSS,, /BSS, 0 [6.6]

low

is an F statistic given the same null hypothesis but the research hy-
pothesis that the error term variance is a decreasing function of Xi.
Clearly, these F ratios should be approximately 1.00 in value if the error
term were homoscedastic. More specifically, both F distributions have
(n—m-2k-2)/2 degrees of freedom in both the numerator and the de-
nominator (where k denotes the number of independent variables in
the model).

Of course, the Goldfield-Quandt test is not helpful if the analyst
suspects that there is heteroscedasticity, but not in the form of a mono-
tonic relationship between an independent variable and the error term
variance. For example, the test would fail to detect heteroscedasticity in
which the error term has small variance at central observations (when
the cases have been ordered according to the magnitude of an inde-
pendent variable) and larger but equal variances at the both extremes of
the ordering. Glejser (1969) presents a test for heteroscedasticity that
involves regressing the absolute values of regression residuals for the
sample on the values of the independent variable thought to covary with
the variance of the error term. Then the Glejser test for heteroscedasticity
involves significance tests for the coefficient estimates from this regres-
sion. The advantage of this approach is that one can use a variety of
nonlinear specifications for the regression of the absolute value of
residuals on an independent variable to allow tests for forms of hetero-
scedasticity in which there is a nonmonotonic relationship between error
term variance and the independent variable. Furthermore, the Glejser
test can yield an estimate of the specific functional form (whether linear
or nonlinear) of the relationship between the variance of the error term
and an independent variable. Such information is vital when we seek to
obtain estimators for regression coefficients that will have lower
variance than the OLS estimators. Details of the Glejser test can be
found in Glejser’s (1969) original presentation.
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An Nustration of Heteroscedasticity:
Income and Housing Consumption

In this section, we consider a regression model

Y=q+f X +8,X, e [6.7]

in which the dependent variable (Y) is the amount of rent (in dollars per
month) paid by nonrural apartment dwellers. The model includes two
independent variables: (i) annual tamily income (in thousands of
dollars), to be denoted X, and (ii) a dichotomous variable—community
type, denoted Xz—which takes on the value 0 for central city renters and
[ for suburban renters. We establish as the “population”for the analysis a
subset (of size 163) of the respondents to a survey of Baltimore and
Detroit residents on “economic incentives, values, and subjective well-
being ” conducted in 1971."

We would expect that families with high incomes would tend to rent
higher-cost apartments than families with low incomes, and that subur-
ban housing would tend to be more expensive than central city
apartments. Indeed, when data for the full population is used, the OLS
partial slope coefficients for both X; and X are positive. Specifically,
the OLS results showed the following relationship in the “population™

Y=7870+274 X, +1615X, +e (6.8]

But we expect heteroscedasticity in this model; for reasons similar to
why we expect heteroscedasticity in the relationship between family
income and vacation expenditures, we anticipate that the variance of the
error term € (in equation 6.8) should be positively related to totalfamily
income, X;.

We took a random sample of 40 cases from the “population” and
estimated the coefficients for the model using OLS regression; the
results are presented in column 1 of Table 6.1. To test for the presence of
heteroscedasticity, the regression residuals were plotted against family
income, X,, to obtain the graph in Figure 6.4. Inspection of the graph
gives clear impressionistic evidence the presence of heteroscedasticity,
as the width of the “envelope” of residuals grows steadily in size as
income level increases across the sample.

More formal evidence of heteroscedasticity can be obtained from the
Goldfield-Quandt test. Following the procedure specified above, we
reordered the 40 observations in order of increasing magnitude on Xy;in
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TABLE 6.1

Coefficient Estimates for a Random Sample
of Size 40 for Equation 6.7

1) 12) {3} 4]
Ordinary Least Squares Weighted Least Squares
Population Coefficient Stendard Coefficient Standard
Coefficient Estimate Error Estimate Error
@ 65.57 24,98 89.34 17.57
8, 4,34 270 1.75 2.20
B, 24.80 14.90 24.21 12.24

this sample, the first case had a value of 4.50, whereas the last had a vélue
of 13.75. Following Goldfield and Quandt’s rule of thumb, we deleted
the middle quarter of the reordered cbservations (m = 10), thus leaving
30 cases. OLS regression analysis was then performed for the first 15 and
last 15 cases separately, and the sum of squared residuals for the two
regressions were ESSi.w = 5818 and ESSygn = 46791, respectively. There-
fore, the F statistic for the null hypothesis of homoscedasticity versus
the research hypothesis that the variance of the error term is positively
related to X; is

F,=ESS, . /ESS  =46791/5818=8.04 [6.9]

high
and the degrees of freedom (for both the numerator and denominator)
are

(n-m-2k=2)/2=(40~10-4-2)/2=12 [6.10]

Using a significance level of .001, a table of F critical points (available in
most statistics texts) shows that the critical point for 12 degrees of
freedom in both the numerator and denominator is approximately 7.1.
Because 8.04 exceeds 7.1, we can reject the null hypothesis that the error
term is homoscedastic in favor of the research hypothesis that error term
variance and family income are positively related.

We have explained that OLS partial siope coefficient estimators
remain unbiased even with pronounced heteroscedasticity. Although we
cannot prove that thisis so for our illustration, we can demonstrate this
property by drawing repeated random samples from our “population,”
and examining the average regression coefficient estimates over the set
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Figure 64: Residuals from the OLS Regression Reported in Table 6.1 Plotted
Against Family Income (X,)

of samples. As we have argued above, if an estimator is unbiased, the
average value of the estimates obtained over repeated random samples
should be very close to the corresponding “population”regression coeffi-
cient. In this case, we took 100 different random samples from our
population and obtained OLS estimates for each; the results are sum-
marized in Table 6.2. As can be seen, for the intercept o and the partial
slope coefficients 81 and B, the average coefficient estimate (in col-
umn 2) is quite close in value to the population coefficient reported in
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TABLE 6.2
Summary of Results for OLS Regressions for Equation 6.7
for 100 Different Random Samples of Size 40

) (2) (3 {4) (3] {6
Average Minimum  Maximum Standard
Populgtion GLS Column 2 aLS OLS Deviation of
Coefficient Value Estimate Column ]  Estimate  Estimate OLS Estimates
a 78,70 79.17 1.006 35.23 126,74 22,34
f, 2.14 2,712 993 +2,02 8.13 2.50
[ 16.15 15.32 948 —-5.60 50.82 1111

equation 6.8 {and reproduced in column 1 of Table 6,2), But although
the average values of the estimates are “on target,” unbiasedness does
not ensure that any single estimate will be on target. And, indeed, Table
6.2 shows that the minimum and maximum values of coefficient esti-
mates over the 100 sampies are quite far off the mark.

Dealing with Heteroscedasticity
and Autocorrelation

I tests indicate the presence of marked heteroscedasticity, the first task
of the analyst is to consider the possibility that the heteroscedasticityisa
result of interaction of an independent variable with some variable not
included in the model. Here, of course, there are no statistical guides; the
analyst must rely on theory to suggest potential excluded variables that
interact with included variables in affecting the dependent variable. If
theory does point to such interaction, dealing with heteroscedasticity
becomes a matter of finding the appropriate specification for the type of
interaction expected, and estimating the coefficients of the revised
model—subjects of Chapter 5. And of course, the consequences of
ignoring heteroscedasticity due to “interaction™ are quite severe. The
proposition that-—even with heteroscedasticity—slope and intercept
coefficient estimates remain unbiased is correct only under the assump-
tion that the regression model accurately specifies the underiying
theory. If the model being tested excludes a theoretically important
independent variable that interacts with an incluoded variable, the
regression model will misspecify the “true™ underlying theory, and
coefficient estimates will be biased.

If the analyst can find no basis for expecting that an “interacting
variable” has been unreasonably excluded from the model, and is con-
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vinced that heteroscedasticity is a result of the nature of measurement
of the dependent variable, an aggregated unit of analysis, or other
problems, the analyst is free to assume that OLS estimators are unbiased
but not BLUE. Attention should then turn to the possibility of using a
procedure that yields more efficient estimators. Generalized least
squares (GLS) is a technique that will always yield estimators that are
BLUE when either heteroscedasticity or autocorrelation is present. GLS
accomplishes this by using information about the nature of the relation-
ship between (i) the variance of the error term and an independent
variable (with heteroscedasticity), or (ii) the error terms associated with
different observations (with autocorrelation)., Whereas the OLS
criterion requires selecting coefficients that mitimize the sum of squared
regression residuals

W

Y, ~Y)? [6.11]

J
GLS minimizes a weighted sum of squared residuals. In the case of
heteroscedasticity, observations expected to have error terms with large
variances are given a smaller weight than observations thought to have
error terms with small variances. Specifically, coefficients are selected
that minimize

3 [1/VAR(E] Y, ~ ¥,)? [6.12]
j=1 b} 3 }

This is an intuitively plausible strategy for arriving at estimates more
efficient that those generated by OLS,; it makes sense that observations
with values on the dependent variable, the error component of which is
determined by an error term with the smallest variance, should give the
best information about the position of the true regression line. However,
the use of GLS requires knowledge of the specific nature of the hetero-
scedastic error term. It is not sufficient to know that the variance of the
error term is correlated with a particular independent variable; one must
be able to assume a specific functional form for the relationship between
the independent variable and the error term variance. The best strategy
for determining the appropriate functional form is to rely on theory to
anticipate the likely functional form, and then apply the Glejser
approach recommended for detecting heteroscedasticity.

A presentation of the GLS estimation technique requires matrix
algebra and is beyond the scope of this book (for a good treatment, see
Wonnacott and Wonnacott, 1979, Chap. 16). But when heterosce-
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dasticity is present and conforms to one of a few specific “functional
forms,” estimators equivalent to those generated by GLS can be
obtained using a weighted least squares (WLS) procedure utilizing OLS
regression on a transformed version of the original regression model.'®

In the most common application of WIS, the analyst is willing to
assume that the standard deviation of the error term is linearly related to
one of the independent variables. To illustrate the technique, we ex-
amine a regression model in which there are two independent variables

Y,=atf X +8,X, te [6.13]

and there is heteroscedasticity in which the standard deviation of the
error term is linearly related to X, for instance

SD(ej.) = kX;j [6.14]
or equivalently,
SD(ej)/Xlj =k [6.15]

where k is a constant. Given this form of heteroscedasticity, the GLS
estimates of @, 81, and B for a specific sample would be the values—a©,
b$, and b%, respectively—that minimize

o 2,2 o2
Z K- %)

It can be shown that we can obtain these GL.S estimates by transform-
ing the original regression equation and applying OLS. The trans-
formation required is to divide through equation 6.13 by Xj; to obtain

Yi/Xh. = (1 /Xu‘) +8, + 52(X211Xﬁ) + (ej,th.) {6.16]

But given assumption 6.15 about the standard deviation of the error
term in equation 6.13, the standard deviation of the error term in
transformed equation 6.16 is constant and equal to k. Thus if the analyst
constructs three new variables—Y7 = Y;/ Xy, X5 = 1/Xy;, and X™ =
X/ X;—OLS regression can be applied to the equation

Y] =B, +aX] + X+ (6/Xy) [6.17]
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to yield WLS estimates of o, 81, and Bz The WLS estimators turn out to
be identical to the GLS estimators a® bS, and b5, and thus are the
estimators of the coefficients for the 0r1gma} model (equation 6.13) that
have minimum variance among the class of unbiased estimators.

A similar procedure can be applied to a regression model with any
number of independent variables, when it is reasonable to assume that
the variance of the error term is linearly related to one of the inde-
pendent variables, X The first step is always to divide through the
original equation by X. Then in the second step, OLS regression is used
to estimate the coefficients of the transformed equation. The only
precaution the analyst must take is to properly “match” the coefficient
estimates obtained with the correct independent variables in the original
model. For example, note that the intercept of equation 6.17 is not the
intercept of original equation 6.13; rather it is 81, the coefficient for X, in
eguation 6.13.

An illustration of WLS. If we are willing to assume that the standard
deviation of the error term in equation 6.7 is linearly related to family
income (X:)-—an assumption that seems plausible-~then WLS can be
used to derive regression coefficient estimates which are BLUE. To
begin, we divide equation 6.7 by Xj;, yielding an equationin the form of
equatlon 6.16, Then defining the three new variables Y4 = Y Xy,

= 1/Xy;, and X = Xo/ Xy;, we use OLS regression (with data from
the same sample of 40 cases that produced the results in columns | and 2
of Table 6.1) to estimate the coefficients of equation 6.17. These esti-
mates are the WLS estimates of @, 81, and 8z. The results are reported in
columns 3 and 4 of Table 6.1. Note that the standard errors of the WLS
estimates are smaller than those of the OLS estimates for each of ¢, 1,
and B,. This is consistent with the claim that WLS estimators are more
efficient than those generated by OLS.

7. ADDITIONAL CONCERNS

In this monograph we have examined some of the major problems
that occur when the assumptions of multiple regression analysis are
violated. It is not at all uncommon that one or more of the assumptions
underlying regression are violated in typical applications. However, this
does not mean that a researcher must be content with estimators of
partial slope coefficients that are biased or inefficient. In many cases it is
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possible to anticipate that an assumption may be violated, conduct
specific tests of the applicability of the QLS assumptions, and when
violated, take some action to deal with the problem and eliminate the
bias and inefficiency that often result.

In a short monograph it is not possible to cover every problem that
can appear when using regression. But the reader should be aware of
several other major issues. First, we have assumed throughout that all of
the variables used in a multiple regression analysis are measured at the
interval level. Using variables measured only at the ordinal or cate-
gorical levels violates one of the major assumptions the methed is built
on, With ordinal or categorical-level dependent variables, alternative
estimation procedures such as logit, probit, or discriminant analysis are
appropriate (see Hanushek and Jackson, 1977, Chap. 7; Klecka, 1979;
Aldrich and Nelson, 1984},

We have also only dealt with single-equation models. In many situa-
tion, several dependent variables may be examined in a multi-equation
model, and an independent variable in one equation may be a de-
pendent variable in another. Furthermore, in some cases, “reciprocal
causation” between variables may be posited, in which one variable is
assumed to be both caused by, and a cause of, a second variable.
Multi-equation models such as these require special treatment beyond
the scope of this monograph (see Asher, 1983; Berry, 1984; Hanushek
and Jackson, 1977).

Finally, we have provided only a basic introduction to more general
procedures for estimating models that violate the assumptions of the
regression model and make OLS estimation inappropriate. Techniques
such as generalized least squares (GLS) and two-stage least squares
(28L8) provide the basis for estimating many more complex models
than discussed here. However, a full appreciation of these procedures
requires some understanding of matrix algebra (see Hanushek and
Jackson, 1977; Kmenta, 1971),




NOTES

1. Thisis the traditional interpretation of a partial slope coefficient. But the interpre-
tation implicitly assumes that it is possible to manipulate the independent variable, X;. In
many cases in the social sciences this is not possible, especially when the stedy design is
cross-sectional, An alternative way of interpreting a partial slope coefficient is as the
expected difference in the dependent variable for a one unit difference in the independent
variable.

2. To be precise, the coefficient estimators wili not be 1060 percent efficient. From
equation 1.13 it can be seen that the standard error of 2 partial slope coefficient estimator
will increase as additional independent variables are added to the model (i.e,, as k in-
creases) even if the new variables are uncorrelated with the variables already in the
equation. However, as long as the number of cases significantly exceeds the number of
variables the increase in the standard error will be trivial,

3. The dependent variable in this model, vote choice (Johnson or Goldwater), is
clearly dichotomous. This is technically a violation of the assumption that all the variables
in multiple regression analysis are measured at the interval level. Hanushek and Jackson
(1977: 205-207) also estimate this model using logit and probit analysis. A discussion of

these procedures is beyond the scope of this' monograph.
’ 4, The independent variable Xa is actually the product of X; and X.. For a detailed
discussion of terms such as this, see Chapter 5.

5. Although the analyst can calculate these R-square values directly with k different
regressions, Lemieux (1978) offers a formula for their calculation requiring only the
information typically available from a statistical package output for the original regres-
sion model.

6. Formulas for this estimator can be found in Kmenta (1971: 385-386); for a more
general treatment of the use of external information to improve the estimation of param-
eters in regression analysis, which relies on matrix algebra, see Goldberger (1964
255-265).

7. Another approach reasonable when correlated variables are multiple indicators of
the same concept is to respecify the model in the form of a multipie indicator model, and
estimate coefficients using path analytic procedures (see, e.g., Sullivan and Feldman,
1979) or a maximum likelihood approach such as LISREL (see, e.g., Long, 1983).

8. The elliptical “shape” of the confidence interval results from the negative corzela-
tion between the estimators by and b.

9. See Kmenta (1971: 461-466) and Cook and Weisberg (1982} for discussions of (i)
models that are nonlinear or nonadditive with respect to parameters and, (if) suitable
estimation procedures for such models. .

10. This will not necessarily be the case if some of the partial slope coefficients in a
model are precisely zero. But the number of bends is always less than or equal to m~1.
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i1. The slope of the polynomial model of order 3 at X is equal to 81 + 28X, + 36 XT,
Formulas for higher order polynomials can be deterimined using calculus: The siope of the
curve at any value of the conceptual independent variable can be determined by finding the
derivative of the equation with respect to the variable at that value. Any introductory
calculus book should describe this procedure.

12, One can use any base for the logarithms; the most commeonly used are base 10 and
base e-—the latter giving “natural” logarithms.

13. Lewis-Beck does not address the muiticollinearity problem specifically in his
article; this issue was raised in a discussion with him.

14. When the error term in a model is Aomoscedastic, OLS estimates turn out to be
identical to those produced by GLS. (For a geod discussion of GLS estimation, see
Hanushek and Jackson, [977: 145-176.)

15. Most computer regression packages—inciuding SPSS and SAS-—--provide such
piots of residuals when requested.

16. In illustrative analyses, Goldfield and Quandt set m to & value corresponding to
about 25 percent of the sample size.

{7. The data are from (SR {Institute for Social Research, University of Michigan,
study 466080). To improve the value of the data set for illustrative purposes, the popula-
tion was restricted to families with annual incomes less than $15,000. Furthermore, the
originai data for income are in categories (under $500, $500-3999, $1000-31999, $2000-
$2699, $3000-33999, $4000-34999, $5000-57499, $7500-39999, $10,000-812,499, and
$12,500-514,999); the mean values of the categories are used to measure X;.

8. Readers wishing to use GLS estimation when autocorrelation is present should
refer 1o detailed treatments of the subject by Ostrom (1978) and Hibbs (1974).
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