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Series Editor’s Introduction

Researchers in the social sciences, business, policy studies and other
areas rely heavily on the use of linear regression analysis. The frequency
with which the technique is employed is demonstrated by a review of
articles in professional journals such as the American Economic Re-
view, Journal of Finance, American Political Science Review, Journal
of Policy Analysis and Management, Journal of Marketing, Journal of
Educational Research, and American Sociological Review. The use of
linear regression is so common because this research tool adds consider-
ably to the understanding of economic, political, and social phenomena.

Frequently, instructors would like to supplement their courses with
materials, such as articles from professional journals, that use regression
analysis. To students unfamiliar with regression, however, research
based on the technique can be incomprehensible. For those who have
yet to take a statistics course, this book is intended to provide the
background needed to understand much of the empirical work relying
on linear regression analysis. The book provides a heuristic explanation
of the basic procedures and terms used in regression analysis. Written at
the most elementary level and assuming only a minimal mathematics
background, the book focuses on the intuitive and verbal interpretation
of regression coefficients, associated statistics, and hypothesis tests.
Other terminology often encountered in today’s literature is also ex-
plained, including standardized regression coefficients, dummy vari-
ables, interaction terms, and transformations. Brief discussions of some
of the major problems encountered in regression analysis are also
presented.

The book can be used as a supplementary text in a variety of courses
in numerous fields. Examples given in the text encompass the fields of
demography, economics, education, finance, marketing, policy analy-
sis, political science, public administration, and sociology. Instructors
in any of these areas are likely to find the text useful.

The authors do not intend for this book to serve as a substitute for a
course or textbook in statistics. It is not designed to teach the use of

7



regression analysis, but rather to fill the void that exists when the
student encounters empirical papers before taking a statistics course. On
the other hand, the level of exposition makes the volume suitable as an
introductory supplement in applied statistics courses where students are
encountering linear regression for the first time.

This book is an outgrowth of material previously prepared by the
authors for students in intermediate economics courses who did not
have a background in statistics. An earlier, more limited version of the
book was published by General Learning Press under the title, Interpret-
ing Linear Regression Analysis: A Heuristic Approach. This version has
been expanded to encompass the many other disciplines that use regres-
sion analysis.

—Richard G. Niemi
Series Co-Editor

.
.
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UNDERSTANDING
REGRESSION ANALYSIS

LARRY D. SCHROEDER
Syracuse University

DAVID L. SJIOQUIST
Georgia State University

PAULA E. STEPHAN
Georgia State University

1. LINEAR REGRESSION

Hypothesized Relationships

The two statements, “The more a political candidate spends on
advertising, the larger the percentage of the vote he will receive” and
“Mary is taller than Jane,” express different types of relationships. The
first statement implies that the percentage of the vote that a candidate
receives is a function of, or is caused by, the amount of advertising, while
in the second statement no causality is implied. More precisely, the
former expresses a causal or functional relationship while the latter does
not. A functional relationship is thus a statement (often in the form of an
equation) of how one variable, called the dependent variable, depends
on one or more other variables, called independent variables. In the
example, the share of the vote a candidate receives is dependent on (is a
function of) the amount of advertising, which is independent of the
percentage of the vote received. Another independent variable that
might be included is the number of prior years in office, in which case the
functional relationship would be stated as, “The candidate’s share of the
vote depends on the amount of advertising as well as the candidate’s
prior years in office.”

. 11
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Other examples of functional relationships are: (1) “If he allows his
hair to grow longer, he will become stronger,” (2) “If she studies more,
her grades will improve,” and (3) “If the price of oranges increases,
individuals will purchase fewer oranges.”

One of the activities of researchers is testing the validity or falsity of
hypothesized functional relationships, called hypotheses' or theories.
This volume discusses one tool used in testing hypotheses—linear
regression.

Linear regression analysis is applicable to a vast array of subject
matter. Consider the following situations in which regression analysis
has been employed: a study of the effect of shelf space devoted to a
particular product on the sales of that product (Curhun, 1972); a study
of the effect of the size of the dividend paid by a corporation on the value
of the corporation’s stock (Durand, 1959); a study of the effect of school
quality on academic achievement (Coleman et al., 1966); a study of the
effect of age on the probability that an individual or family will move
(Polachek and Horvath, 1977).

All of these examples are cases in which the application of regression
analysis was useful, although the application was not always as straight-
forward as the example to which we now turn.

A Numerical Example

To facilitate the discussion of linear regression analysis, the following
food consumption example will be referred to throughout the book.
Suppose one were asked to investigate by how much a typical family’s
food expenditure increases as a result of an increase in its income. While
most would agree that there is a relationship between the amount spent
on food and income, the example is in fact an investigation of an
economic theory. The theory suggests that the consumption of food is a
function of family income;” that is, C = f(I), read “C s a function of I”,
where C (the dependent variable) refers to the consumption of food and
I (the independent variable) refers to income. Throughout the book we
will refer to the theory that C increases as 1 increases as the hypothesis.

The investigation of the relationship between C and I allows for both
testing the theory that C increases as a result of increases in I and
obtaining an estimate of how much food consumption changes as
income changes. One can therefore consider the investigation as an
analysis of two related questions: (1) Does spending on food increase
when a family’s income increases? (2) By how much does spending on
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food change when income increases or decreases? As will be seen in
Chapter 3, these questions cannot be answered with certainty. However,
since the material in this section can be more easily understood by
assuming that answers to these questions can be provided with certainty,
we shall proceed initially under this assumption.

At least two strategies for analyzing these questions are feasible. One
can observe various families over time and note how their consumption
of food changes as their income changes, or one can observe income and
food consumption differences among several families and note how
differences in food consumption are related to differences in income. We
have adopted the latter approach, employing the hypothetical data
given in columns ! and 2 of Table 1, which represent annual income and
food consumption information from a sample of 50 families in the
United States for one year. Assume that this sample was chosen random-
ly from the population of all families in the United States.’ The associat-
ed levels of these two variables have been plotted as the 50 points in
Figure 1.

Casual observation of the points in Figure 1 suggests that C increases
as lincreases. However, the magnitude by which C changes as I changes
for the 50 families is not obvious. For this reason the presentation of
data in tabular or graphical form is not by itself a particularly useful
format from which to draw inferences. These formats are even less
desirable as the number of observations and variables increases. Thus
we seek a means of summarizing or organizing the data in a more useful
manner.

Any functional relationship can be most conveniently expressed as a
mathematical equation. If one can determine the equation for the rela-
tionship between C and I, one can use this equation as a means of
summarizing the data. Since an equation is defined by its form and the
values of its parameters,” the investigation of the relationship between C
and I entails learning something from the data about the form and
parameters of the equation.

The economic theory that suggests that C is a function of I does not
indicate the form of the relationship between C and I. That is, it is not
known whether the equation is of a linear or some other, more complex
form. In some problems the general form of the equation is suggested by
the theory, but since this is not so in the food expenditure problem, it is
necessary to specify a particular form. We shall assume that the form of
the equation for our problem is that of a straight line, which is the
simplest and most commonly used functional form.’



14

TABLE 1
Food Consumption, Family Income, and Family Size Data
(1) (2) {3) 4)
Food Family
Consumption Income Size Live on Farm
$ 72352 $ 8,246 1 No
780.70 8,742 4 No
990.74 9,048 6 No
1,634.98 10,584 7 No
1,189 40 10,626 2 No
1,295.64 10,984 2 No
1,025.52 11,822 1 No
1,792.18 12,532 2 No
1,328.00 12,952 5 No
780.06 13,220 2 Yes
1,366.14 13,386 6 No
2,950.72 13,746 8 No
1,273.34 13,946 2 No
1,953 58 14,206 2 No
866.62 14,388 1 No
2,125.30 14,622 4 No
2,372.00 15,032 2 No
2,477 34 15,172 5 No
1,148.24 16,284 1 No
2,108 14 16,664 3 No
1,810.96 17,124 2 No
1,776.58 17,302 2 No
2,295.04 18,254 3 No
877.52 18,908 1 Yes
1,284.00 18,922 2 No
1,502.94 19,330 2 Yes
1,939.00 20,108 3 No
2,443.06 20,600 3 No
2,003.44 21,238 4 No
1,682.36 22,120 2 No
2,308.16 22,452 7 No
1,472.44 23,288 2 No
2,534.66 23,316 4 No
2,194.76 23,588 2 No
1,638.26 23,708 3 No
2,612.00 23,830 6 No
2,328.96 23,908 2 No
1,666.90 24216 3 No
2,560.22 25,422 1 No
3,103.54 25,504 9 No
2,819.06 26,286 5 No
975.10 26,590 2 No

(eontinued)
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TABLE 1 (Continued)

(1) (2) (3) 14)
Food Famuly
Consumption Income Size lweon Farm
2,122 52 26,852 1 No
1,068.38 27,146 3 Yes
2,253.46 27,936 6 No
2,763.40 28,556 5 No
1,904.66 28,874 3 No
2,111.50 29,450 4 No
3,211.64 29,624 1 No
2,665.78 29,690 4 No
SOURCE: Hypothetical data.
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Figure 1: Scatter Diagram of Family Income and Food Consumption
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Given this assumption, one can express the functional relationship
that exists between C and I for all U.S. families as

C = o+l (1]

where a (the Greek letter alpha) and 8 (the Greek letter beta) are the
unknown parameters assumed to hold for the population of U.S.
families and are referred to as the population parameters.® (See also
Figure 2.)

Given the assumption that the form of the equation of the possible
relationship between C and I can be represented by a straight line, what

20 4- Line 1
=
€ 154+
S
=8
g
3 10 Line 2
5 4
Line 3
| ! l
T i 1 1
5 10 15 20
Income (in thousands)

Figure 2: Illustration of Different Slopes
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remains is to estimate the values of the population parameters of the
equation using our sample of 50 families. The two questions posed
earlier refer to the value of the slope—that is, the value of 8. The first
question asks whether B is greater than zero, while the second asks the
value of 8. By obtaining an estimate of the value of 8, a statement can be
made as to the effect of changes in income on the level of food consump-
tion for the 50 families in our sample. Further, from this estimate of
inferences can be drawn about the behavior of all families in the
population.

Before proceeding, it is important to note the following. The actual or
“true” form of the relationship between I and C is not known. We have
simply assumed a particular form for the relationship in order to summa-
rize the data in Figure 1. Further, we do not know the values of the
population parameters of the assumed linear relationship between C
and 1. The task is to obtain estimates of the values of « and 8. We will
denote these estimates as a and b.

Estimating a Linear Relationship

The question that may come to mind at this point is, how can it be
stated that income and food consumption are related by a precise linear
equation when the data points in Figure 1 clearly do not fie on a straight
line? The answer comprises three parts. First, the equation is only a
summary of the data points and does not imply that C and 1 are related
in precisely this manner. Second, the hypothesis is based on the implicit
assumption that only income and consumption differ between these
families. However, other things, such as family size and tastes, are not
likely to be the same and no doubt affect the amount of food consumed.
Third, there is randomness in people’s behavior; that is, an individual or
family, for no apparent reason, may buy more or less food than some
other family that appears to be in exactly the same situation with regard
to income, taste, and the like. Thus one would not expect the data points
to lie consistently on a straight line, even if the line did represent the
average response to changes in income.

Asnoted previously, from the data points in Figure 1 it is not obvious
how much C increases as I increases; that is, it is uncertain what the
position of the line summarizing the data points should be. To see this,
consider the two solid lines that have been arbitrarily drawn through the
points in Figure 3. Line 1 has the equation C = 1,000 + 0.011, and line 2
has the equation C = 200 + 0.101. Which of these two lines is the better
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3400 ﬁ
3200 +
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2800
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Figure 3: Two Possible Summaries of the Income-Consumption Relationship

estimate of how food consumption changes as income changes? This is
the same as asking which of the two equations is better at summarizing
the relationship between C and I found in Table 1. More generally,
which line among all the straight lines that it is possible to draw in Figure
3is the “best” in terms of summarizing the relationship between C and 1?
Regression analysis, in essence, provides a procedure for determining
the regression line, which is the best straight line (or linear) approxima-
tion of the relationship between C and I. This procedure is equivalent to
finding particular values for the slope and intercept.

An intuitive idea of what is meant by the process of finding a linear
approximation of the relationship between the independent and depen-
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dent variables can be obtained by taking a string or pencil and trying to
“fit” the points in Figure 1. Move the string up or down, or rotate it until
it takes on the general tendency of the points in the graph.

What property should this line possess? If asked to select which of the
two solid lines in Figure 3 is better at summarizing (estimating) the
relationship between income and food consumption, one would un-
doubtedly choose line 1 because it is “closer” to the points than line 2.
(This is not to imply that line 1 is the regression line.)

Closeness or distance can be measured in different ways. Two possi-
ble measures are the vertical or horizontal distance between the ob-
served points and a line. In the normal case, where the dependent
variable is plotted along the vertical axis, distance is measured vertically
as the differences between the observed points and the line. This is
shown in Figure 3, where the vertical dotted line drawn from the data
point to line 1 measures the distance between the observed data point
and the line, In this case distance is measured in dollars of consumption,
not in feet or inches. The choice of the vertical distance stems from the
theory stating that the value of C depends on the value of I. Thus, for a
particular value of income, it is desired that the regression line be chosen
so as to predict a value of food consumption that is as close as possible to
the value of food consumption observed at that income level.

The regression line cannot minimize the distance for all points simul-
taneously. In Figure 3 it can be seen that some points are closer to line 1
while others are closer to line 2. Thus a means of averaging or summing
up all these distances is needed to obtain the best fitting line.

Although several methods exist for summing these distances, the
most common method in regression analysis is to find the sum of the
squared values of the vertical distances. This is expressed as

where C, is the value of C that would be estimated by the regression line
and is read “C hat sub i.”’
Least Squares Regression

In the most common form of regression analysis, the line that is
chosen is the one that minimizes
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which is called the sum of the squared errors, frequently denoted SSE.
For each observation, the distance between the observed and the
predicted level of consumption can be thought of as an error, since the
observed level of consumption is not likely to be predicted exactly but is
missed by some amount (C, - C,). This error may be due, for example, to
randomness in behavior or other factors such as differences in family
size. Because the squares of the errors are minimized, the term least
squares regression analysis is used.

The reason for selecting the sum of the squared errors lies in statistical
theory that is beyond the scope of this book. However, an intuitive
rationale for its selection can be presented. If the errors were not
squared, distances above the line would be canceled by distances below
the line. Thus it would be possible to have several lines, all of which
minimized the sum of the nonsquared errors.® It is implicit that closeness
is good, while remoteness is bad. It can also be argued that the undesir-
ability or remoteness increases more than in proportion to the error.
Thus, for example, an error of four dollars is considered more than twice
as bad as an error of two dollars. One way of taking this into account is
to weight larger errors more than smaller errors, so that in the process of
minimizing it is more important to reduce larger errors. Squaring errors
is one means of weighting them.

Let a and b represent the estimated values of o and B for the still
unknown regression line. Thus C, can be expressed as C, = a + bl
Substituting a + bl, for C,, the expression for SSE can be rewritten as

[

N 2
Z (C-a-bl) [1]

Using the calculus, expressions for a and b can be found that minimize
the value of expression 2 and hence give the least squares estimates of a
and B, which in turn define the regression line (see Appendix A for the
derivation of the formulas).

For the given set of data, the a and b that minimize

50 2
> (Ci—a~bI)
i=1 t
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arc a=714.58 and b =+0.058 (see Appendix A for the calculation of these
values). Therefore, the least squares line, which is drawn in Figure 4, has
the equation

C=714.58 + 0.0581 [3]
These results mean, for example, that the estimate of consumption fora

family whose annual income is $10,000 is $1294.94—that is, $1294.24 =
$714.58 + 0.058(%10,000). Remember, this is an estimate of C and not

3400 1
3200 { d
3000 1 .

2800 1 * o
2600 1 o
2400 1
2200
2000 1
1800 {
1600 1
1400 +
1200 {
1000 ¢
800
600 {
400 ¢
200

C=71458 +
0581

Consumption (in dollars)

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32

Income (in thousands)

Figure 4: ‘‘Best Fitting’’ Regression Line



22

necessarily the amount one would observe for a specific family with an
income of $10,000. The value of a, $714.58, is the estimated food
consumption for a family with zero income. The value of b, 0.058,
implies that for this sample, each dollar change in family income results
in a change of $0.058 in food consumption in the same direction (note
the positive sign for b).

These conclusions, of course, hold only for this particular sample.
When the least squared technique is applied to additional samples of
consumers, one would obtain additional (generally different) estimates
of @ and B.

It is important to point out that regression analysis does not prove
causation. Our estimate of 8 is consistent with the theory that an
increase in income causes an increase in food consumption. However, it
does not prove causation. Note that we could have reversed the equa-
tion, making I depend on C, and argued that higher food consumption
makes for healthier and more productive workers who thus have higher
incomes. Since I and Cincrease together, this relationship would also be
supported. It would take some alternative experiment or test to deter-
mine the direction of the causation. Our estimate of 8, however, is not
consistent with the theory that food consumption decreases with in-
creases in income.’

Examples

Before proceeding, three examples are presented to illustrate how
regression analysis is used.

EXAMPLE 1—INFLATION AND STOCK PRICES

Are stocks of major corporations a hedge against inflation—that is,
does the return on a portfolio of stocks increase with the rate of
inflation? Jaffe and Mandellzen (1976) address this question, as part of a
broader study, by estimating the following regression equation

R.=.0168 - 3.0141;

where R is the rate of return on a market portfolio of stocks in month t
and 1. is the rate of inflation in month t.'° The estimate of the regression
coefficient on I; is -3.014, which implies that an increase in the inflation
rate of one percentage point is associated with a reduction in the rate of
return of 3.014 percentage points. Thus, for this portfolio, stocks do not
appear to be a hedge against inflation.
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EXAMPLE 2—HOME STATE ADVANTAGE

Has the advantage held by a U.S. presidential candidate in his home
state diminished over time as elections have become more nationalized?
This question was addressed by Lewis-Beck and Rice (1984). The regres-
sion equation they obtained is

H=203+.18T

where H is the home state advantage, measured in percentage points of
the state popular vote, and T is an election year counter (e.g., for 1904 T
=1, for 1908 T =2, and so on). Notice that the coefficient on T is positive,
which suggests that the home state advantage has not declined over
time.

EXAMPLE 3—PAY PREMIUM FOR VETERANS

In a recent article, De Tray (1982) argues that veterans receive a pay
premium because employers, in evaluating the potential of employees,
realize that veterans have had to pass mental and physical exams and
survive a period of military service before being honorably discharged.
He further argues that the quality of information provided by veteran
status depends on the percentage of an age group that served in the
military. Men who did not serve during war years, when virtually all
able-minded and able-bodied men were drafted, may be less productive
on the average than men who did not serve during peacetime, when few
were called up. Therefore, De Tray hypothesizes that the veteran pre-
mium is positively related to the percentage in an age group that served
in the military. To test this hypothesis, De Tray computed the veteran
premium, w, for each of several age groups and regressed it on the
percentage of each age group that served in the military, V. He found
that the regression equation is equal to

' w=-.078 + 165V

indicating that the premium increases as the percentage of the age group
that served in the military increases. It should be noted that this is only
part of a larger study.

The Linear Correlation Coefficient

In the first part of this chapter, we demonstrated how regression
analysis can be used to summarize the relationship between a dependent
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and independent variable. We turn now to an explanation of descriptive
statistics designed to evaluate (1) the degree of association between
variables and (2) how well the independent variable has explained the
dependent variable.

The correlation coefficient measures the degree of linear association
between two variables."' To understand what statisticians mean by
linear association, consider Figure 5, which has the same 50 points as
Figure 1. The average (or mean) level of food consumption is repre-
sented by the dotted line, while the solid line represents the mean level of
income. The two lines divide the figure into the four quadrants denoted
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3000 }
2800 [ L]
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Figure 5: Linear Correlation Analysis: The Food Expenditure Problem
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by Roman numerals. Levels of C that are greater than the average of
1842.45 lie above the dashed line in quadrants I and 11, while less than
average levels lie below, in quadrants III and IV. Similarly, income
levels greater than the average lie to the right of 19,399 in quadrants I
and IV, while those less than average lie to the left in quadrants I and
III.

Figure 5 demonstrates that a majority of the points in the sample lie in
quadrants I and I1I. Because of this pattern, the variables C and I are
said to be positively correlated. Put differently, C and I are said to be
positively correlated when Cs above (below) the mean value of food
consumption, denoted C, are associated with Is above (below) the mean
value of income, denoted I. On the other hand, if the Cs below C had
been associated with the I’s above I (and vice versa), one would have said
that the variables were negatively correlated. The reader should be able
to demonstrate that in this case the data points would have been clus-
tered in quadrants II and IV. Another possibility exists: If the data
points had been spread fairly evenly throughout the four quadrants, one
would have said that C and 1 were uncorrelated.

The particular descriptive statistic that measures the degree of linear
association between two variables is called the correlation coefficient
and is denoted r. Although we offer no proof, r always lies between the
values of -1 and +1 (-1.0 < r < +1.0). When there is little association
between two variables (When two variables are relatively uncorrelated),
r is close to zero. In the presence of strong correlation, ris close to 1 (+1
for positive correlation, -1 for negative correlation).

Although a positive correlation coefficient of .554 was found in the
food example, where it was hypothesized that changes in income caused
changes in food expenditures, the presence of either a positive or nega-
tive correlation does not always indicate causality. In particular, be-
cause the correlation coefficient only measures the degree of association
between two variables, a cause-and-effect relationship is but one of four
reasons why the presence of correlation may be observed. In addition,
variables may appear correlated if both variables affect each other, if the
two variables are both related to a third variable, or if the variables are
systematically associated by coincidence.

An example of the first condition is that IQ scores and student
achievement scores are likely to be positively correlated. Although it
seems reasonable that 1Q influences achievement, many educators be-
lieve that this is only part of the story. Indeed, it seems likely that the IQ
measure also reflects the level of achievement. An example of the second
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condition is the positive correlation that exists across cities between the
number of churches and the number of bars. Although churches may
spring up in response to bars (or bars in response to churches), the
positive association most likely results because both variables are relat-
ed to some other variable, such as population. A good example of the
last condition is the positive correlation of .609 found between the
number of letters in the names of the teams in the American Football
Conference and the number of wins during the 1984 regular season.'

The Coefficient of Determination

Recall that for any problem, the regression line is defined to be the
line lying closest to the data points (closest in the sense that the line
minimizes the sum of the squared error term). Often, for comparative
purposes, it is useful to know just how close is “close”; in other words, it
is helpful to be able to evaluate what is referred to as the goodness of fit
of the regression line.

An intuitive feeling for what is meant by goodness of fit is given in
Figure 6, in which two distinct sets of data points have been plotted
along with the two lines that minimize the sum of the squared errors.
The regression line in panel A of Figure 6 clearly fits the data points
more closely than the line in panel B.

The measure of relative closeness used by statisticians for evaluating
goodness of fit is called the coefficient of determination. Because of its
relationship to the correlation coefficient, this measure is generally
referred to as the r”. (The coefficient of determination is the square of the
correlation coefficient.) The r’ statistic measures closeness as the percent-
age of total variation in the dependent variable explained by the regres-
sion line. Formally, the measure is defined as
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To measure variation in a family’s food consumption, we want some
common base from which to measure differences in C. To the extent that
families consume more or less than the mean food consumption, C,
there is variation in food consumption. Thus we use C as the base for
measuring variations in C between families.

The denominator of equation 4 is a measure of the total variation in
the dependent variable about its mean value C. For example, consider a
household with an income of $20,108 and observed consumption of
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$1939.00 (shown in Table 1). Since the mean value of consumption is
$1842.45, the observed variation of C from the mean is $96.55 for this
observation ($96.55 = 1939.00 - 1842.45). So that negative variations do
not cancel positive variations, the individual variations are squared
before they are summed.

The numerator of equation 4 is a measure of the total variation
explained by the regression line. For example, from regression equation
3, it follows that the best estimate of food consumption for the family
with an income of $20,108 is $1880.84 (1880.84 = 714.58 +.058($20,108).
Since this is $38.39 from the mean ($38.39 = $1880.84 - $1842.45), it is
said that $38.39 is the variation explained by the regression line for this
observation. The total explained variation is found by summing the
square of these variations for the entire sample.

For the food expenditure problem, the value of the r” is .307, and one
can say that the regression line explains 30.7 percent of the total vari-
ation in food expenditures. Stated somewhat differently, it can be said
that 30.7 percent of the variation (about the mean) in the dependent
variable has been explained by variation (about the mean) in the inde-
pendent variable.

Notice that if the data points were all to lie directly on the regression
line, the observed values of the dependent variable would be equal to the
predicted values, and the r* would be equal to 1. As the independent
variable explains less and less of the variation in the dependent variable,
the value of r* falls toward zero. Hence, as would be expected, the r’ for
the data in panel A of Figure 6, .783, is greater than that for the datain
panel B of Figure 6, .198.

For the three examples presented earlier, the coefficients of determi-
nation, r’, are .0269 for the relationship between stock prices and
inflation, .025 for the presidential home state advantage, and .45 for the
veteran’s premium equation. Note the differences in their values.

Regression and Correlation

It is important to note that linear regression, the correlation coeffi-
cient, and the coefficient of determination are all related but that they
provide different amounts of information and are based on different
assumptions. First, as indicated previously, the coefficient of determina-
tion is simply the square of the correlation coefficient. An examination
of Figure 5 should also convince the reader that if two variables are
positively (negatively) correlated, the regression coefficient will have a
positive (negative) sign."
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While this general relationship between r and b will always hold, one
might ask if one of these two measures provides more information than
the other. The answer is that the regression coefficient is more
informative since it indicates by how much the dependent variable
changes as the independent variable changes, whereas the correlation
coefficient indicates only whether or not the two variables move in the
same or opposite directions and the degree of linear association. This
additional information from regression is obtained, however, only at the
cost of a more restrictive assumption—namely, that the dependent
variable is a function of the independent variable. It is not necessary to
designate which is the dependent and which the independent variable
when a correlation coefficient is obtained.

2. MULTIPLE LINEAR REGRESSION

In Chapter 1, variations in the dependent variable were attributed to
changes in only a single independent variable. This is known as simple
linear regression. Yet theories frequently suggest that several factors
simultaneously affect a dependent variable. Multiple linear regression
analysis is a method for measuring the effects of several factors
concurrently.

There are numerous occasions where the use of multiple regression
analysis is appropriate. In economics it is argued that the quantity of a
good that will be purchased by an individual depends on both income
and the price of the product (Manning and Phelps, 1979). The likelihood
that a family will move depends on both the age of the head of the
household as well as the family’s income (Fields, 1979). In determining
the effect of advertising on the sales of some product, it is important to
include not only the amount of advertising during the current period but
also the amount in earlier periods (Simon, 1969). The proportion of the
vote a congressional incumbent gets in an election is influenced by
-cveral factors, including the healith of the local economy, the incum-
hent’s performance in obtaining federal funds for the district, and how
long the incumbent has been in office (Felman and Jondrow, 1984).

I stimating Regression Coefficients

In the food consumption example only a single variable, income, was
hypothesized as a determinant of family food expenditures. One
tecognizes, however, that even though two families have identical
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incomes, their food expenditures may differ greatly. For example, the
families may differ in size, in the availability of homegrown items which
can decrease out-of-pocket food costs, or in taste. Therefore, it is
reasonable to hypothesize that variables, in addition to income, affect
the amount spent on food. One likely hypothesis is that the amount of
food consumed is positively related to the family’s size, S. Multiple
linear regression analysis is used to estimate the effect of S on food
consumption while at the same time taking into account the effect of
income.

The concept of multiple regression analysis is identical to that of
simple regression analysis except that two or more independent vari-
ables are used simultaneously to explain variations in the dependent
variable. When family size is added to income to explain food consump-
tion, the newly hypothesized relation can be written as

C=a+pil+B:S [5]

where «, B1, and 8, must be estimated from observed values of consump-
tion, income, and family size. For any observed combination of values
for I and S, it is still desired to find values for the coefficients that
minimize the distance between the corresponding observed and esti-
mated values of C.

A graphical presentation of these concepts is now more difficult,
since with two independent variables, three-dimensional drawings are
required. Minimizing distance in this context means minimizing the
length of line segments drawn between the observed values of the
dependent variable and its estimated value lying on the plane corre-
sponding to C = a + BiI + B2S. Algebraically, this means finding the
values of a, by, and b, that minimize the value of

N 2
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As in the case of simple regression analysis, a technique exists which
ensures that the resulting estimates of «, Bi, and B8, are those that
minimize the sum of squared errors and thus give the best estimates of
the coefficients. When this technique is applied to the data in Table 1,
the estimated regression equation obtained is

C=330.77 + 0.0561 + 129.62S [6]
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Interpretation of these results is similar to simple regression analysis.
For example, the coefficients derived from the data indicate that the
estimate of food consumption for a family of four with an income of
$10,000 is $1409.25, since $1409.25 = $330.77 + 0.056($10,000) +
$129.62(4).

More generally, the estimated coefficient on any independent vari-
able estimates the effect of that variable while holding the other indepen-
dent variable(s) constant. Thus the results shown in equation 6 indicate
that holding income constant, an increase of one in family size is
associated with a$129.62 increase in food consumption.'* Similarly, the
results suggest that a dollar increase in income will increase food expen-
ditures by 5.6 cents, holding family size constant. One can also consider
the effect of a simultaneous change in S and I. For example, the
estimated effect of a decrease in income of $1000 at the same time family
size increases by one would be +3$73.62 = 0.056(-1000) + 129.62(1).

The coefficient on income in equation 6 is slightly different from that
reported in the simple linear regression case, where a one-dollar change
in income resulted in a 5.8-cent change in food consumption. In some
cases when another independent variable is introduced, this change in
the value of the estimated coefficient may be large. This issue is dis-
cussed in more detail in Chapter 5.

Multiple regression results come closer to showing the pure effect of
income on food consumption since they explicitly recognize the influ-
ence of family size on food expenditures. It is for this reason that in
formal studies it is not proper to exclude a variable such as family size
when the theory indicates that the variable should be included. To
simplify the presentation, we have not followed this proper practice.

Finally, note that multiple linear regression is not limited to only two
independent variables. Rather, it applies to any case when two or more
independent variables are used simultaneously to explain variationsin a
single dependent variable.

Standardized Coefficients

In the multiple regression example, we noted by how much food
consumption would change for a given change in income holding family
size constant, and by how much food consumption would change for a
given change in family size, holding income constant. A question that
may arise is whether income or family size has the greater impact on
food consumption. If we simply compared the size of the estimated
parameters, it is obvious that b, is much greater than b,, suggesting that
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family size has a greater effect on C or is more important than income.
But that is not an appropriate comparison, since income is measured in
dollars and family size is measured in persons. Comparing b; with b; is
comparing the effect of a one-dollar change in income to the effect of a
one-person change in family size. Relative to the range of income levels,
a one-dollar change in income is very small, while for family size a
one-person change is quite large.

Instead of determining the effect of a one-dollar change in income or
a one-person change in family size, suppose we use a standardized unit
to measure changes in income and family size. One such measure, the
standard deviation, measures the dispersion of the values of a particular
variable about its mean."’ Look at the values of income and family size
in Table 1 and notice that income is spread out over a wider range of
values (from $8,246 to $29,690) than is family size (from 1 to 9). This
dispersion is reflected in the standard deviations, which for income is
$6,382 and for family size 2.00. Thus using the standard deviation as the
unit of measure takes into account that a one-person change in family
size is very important relative to the spread of values for family size,
while a one-dollar change in income is rather unimportant relative to the
dispersion in income levels.

Frequently researchers report standardized coefficients, also referred
to as beta coefficients (do not confuse the beta coefficient with g, the
population parameter). These standardized coefficients measure the
change in the dependent variable (measured in standard deviations)
that results from a one-standard-deviation change in the independent
variables.

For the regression reported in equation 6, the standardized coeffi-
cients are .535 for income and .386 for family size. Thus changing
income by one standard deviation ($6,382), while holding family size
constant, would change food consumption by .535 standard deviations.
Changing family size by one standard deviation, holding income con-
stant, would change food consumption by .386 standard deviations.
When viewed in this way, a change in income has a greater relative effect
on food purchases than does a change in family size, a finding just
opposite to that suggested by the regression coefficient.

Associated Statistics

Just as there is a great deal of similarity between the interpretation of
simple and multiple regression coefficients, so are many of the associ-
ated statistics for the two regression methods also similar.
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The coefficient of multiple correlation, often denoted as R, is similar
to rin that both measure the degree of associated variations in variables.
Rather than measuring the association between two variables, the value
of R indicates the degree to which variation in the dependent variable is
associated with variations in the several independent variables taken
simultaneously. Similarly, R?, the coefficient of multiple determination,
measures the percentage of the variation in the dependent variable
which is explained by variations in the independent variables taken
together.

For regression equation 6, R” is .456, indicating that 45.6 percent of
the variation in C about its mean is explained by variations in I and S
about their respective means. Note that the addition of the second
independent variable has increased the explanatory value of the regres-
sion over that of the simple linear regression case. It is also evident,
however, that even this regression equation does not explain all the
variation in food expenditures.

It cannot be overemphasized that although the coefficient of determi-
nation is of interest, it should never be the sole determinant of the
“goodness” or “badness” of a regression result. The maximization of R?
is not the purpose of regression analysis.

The value of the coefficient of determination will never decrease when
another variable is added to the regression. Although the additional
variable may be of no use whatsoever in explaining variations in the
dependent variable, it cannot reduce the explanatory value of the previ-
ously included variables. Thus, by carefully choosing additional inde-
pendent variables, an investigator can increase the value of R” greatly
without improving his or her knowledge of what affects the value of the
dependent variable. For instance, the amount spent on food is partly
reflective of the amount spent on meat. If a researcher were to include
the dollar value of meat purchases as another independent variable, the
R’ statistic would probably increase greatly. However, such an equation
would not increase our understanding of why food consumption expen-
ditures differ across families. The moral is: If a variable has no place in
the theory, it should not be included in the regression analysis.

Since including additional variables can never decrease the value of
R’ and normally increases it, analysts commonly report the adjusted R*,
denoted R®. This term is R* adjusted for the number of independent
variables used in the regression.'® Thus it is possible that by adding
another independent variable to the regression, the adjusted R? will
decrease although R’ actually increases. For this reason, R? is some-
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times used to determine whether including another independent vari-
able increases the explanatory power of the regression.

Examples

To illustrate the use of multiple regression, consider the following
three examples:

EXAMPLE 1--PREMARITAL COHABITATION

What is the effect of premarital cohabitation with one’s future spouse
on marital satisfaction? This question was addressed by DeMaris and
Leslie (1984) through the use of multiple regression analysis. Using data
from 309 recently married couples, a multiple regression equation,
summarized in Table 2, was estimated for wives.

The dependent variable is a measure of marital satisfaction. The
independent variable of greatest interest is “having cohabited,” which
takes on only two values—zero if the couple did not cohabit, and one if
they did. The coefficient on cohabitation is negative, suggesting for this
sample that premarital cohabitation reduces marital satisfaction. To see
this, note that cohabitation can be interepreted as meaning that the

TABLE 2
Regression Equation for Cohabited Equation
Variables b Beta
Father’s occupation is white-collar —.18 —.01
Education .16 .02
No religious preference -2.55 -.07
Church attendance 33 .04
Differences in education .10 .01
Smalil difference in church attendance ~5.68%* -.17
Large difference in church attendance —42 -.01
Husband is 5-8 years older than wife 5.66* .14
Husband is 9 or more years older than wife 1.37 .02
Sex-role traditionalism 11 10
Having been previously married 3.76 a2
Presence of minor children at home —4.55% -.15
Having cohabited —4.61%* —.14

R? =.13

Number of observations = 262

SOURCE: DeMaris and Leslie (1984). Reprinted by permission.
*p < .05,
**p < .01,
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value of “having cohabited” increases from zero to one. Changing
“having cohabited” from zero to one changes the value of the dependent
value by -4.61, the value of the coefficient on “having cohabited.”

Since people who do and do not cohabit may differ in other ways that
might also affect marital satisfaction, it was necessary to control for these
factors by including other variables in the regression equation. Notice
that many of these variables, including cohabitation, are yes/no
variables, usually called dummy variables (these are discussed in Chap-
ter 4). While the authors report the standardized coefficients (beta), they
do not report the intercept. The value of R is .13. The asterisks are
explained in Chapter 3.

EXAMPLE 2—HOUSEWORK TIME

A question that Gronau (1977) has studied is what determines how
people spend their limited time. As part of a larger study, Gronau
estimated the regression equation presented in Table 3 for a sample of
621 married white women who were not employed outside the home.
The dependent variable is the amount of time in a year that was spent
doing housework, such as cooking and cleaning.

Notice that older and more educated women spend less time at
housework. As the husband’s wage and the family’s other income in-
creases, less time is spent at housework. This could result from eating
out more often or by using cleaning services, both of which could
increase as the family’s income increases. The coefficient on the hus-
band’s wage suggests that an increase in his wage of one dollar an hour

TABLE 3
Regression Equation for Allocation of Time

Variable b t-Ratio
Constant 1,669.40 -
Wife’s age —1.165 37
Wife’s education —-53.469 3.28
Husband’s education 22.668 1.82
Husband’s wage ($/hour) -16.129 2.21
Income from sources other than work (year) —.044 2.23
Children aged 0-17 327.654 6.94
Children at school -125.196 2.86
Rooms in house 83.251 3.17

R? = .26

Number of observations = 621

SOURCE: Gronau (1977). Reprinted by permission.
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TABLE 4
Regression Equation for Job Satisfaction
Variable b Standard Error
Satisfaction with pay —.003 .005
Satisfaction with promotion -.010 .004
Satisfaction with co-workers .003 .007
Satisfaction with work —.034 .007
Satisfaction with supervision -.021 .007

R? =.270

Number of observations = 263

SOURCE: Futrell and Parasuraman (1984), Reprinted by permission.

reduces the time spent on housework by 16.129 hours per year. On the
other hand, the greater the number of children and the larger the house,
the more time spent doing housework. The meaning of the t ratio is
explained in Chapter 3.

EXAMPLE 3-JOB SATISFACTION

The relationship of job satisfaction to the propensity to leave a job
was investigated by Futrell and Parasuraman (1984). Using a question-
naire administered to salespersons, the authors determined the individ-
ual’s level of satisfaction with various aspects of his or her job and the
extent to which the individual was seeking to change jobs, with the latter
being used to measure the propensity to leave. The regression equation
presented in Table 4 was estimated for a sample of 263 salespersons.
With the exception of co-worker satisfaction, the coefficients have the
expected signs; a higher level of satisfaction is associated with a lower
propensity to leave. The standard error is discussed in Chapter 3.

3. HYPOTHESIS TESTING

Introduction

In the food expenditure problem, the hypothesis was advanced that
family food consumption increases as income increases. Since the esti-
mated coefficient was found to be a positive number, one might immedi-
ately conclude that we have proven our case. Unfortunately, drawing
such inferences is not so easy, since our hypothesis concerns the
population of all food consumers, not just the 50 persons in our sample.
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However, the hypothesis-testing procedure allows us to make state-
ments about the entire population from our sample, not just statements
about the particular sample we happened to draw. In order to make such
inferential statements—that is, to infer from the sample something
about the population—we must develop some statistical theory. There-
fore, before turning to testing hypotheses about population regression
coefficients, we consider a slightly less complex example.

Suppose you were browsing through the library and came across a
document indicating that the average height of a// students who at-
tended your university or college in 1920 was 5 feet 4 inches (64 inches).
Suppose further that you became interested in learning whether the
students enrolled in your school today are taller than those of three
generations ago. One way to attack this problem would be to measure
the height of all students currently enrolled. While that procedure might
work well in a small liberal arts college with only a few hundred
students, the task would be enormous if you were a student at a large
state university. Fortunately, statistical theory allows one to make
inferences about the mean height of the entire population using only
information on the average height of students computed from a single
random sample of the student population. After this inference has been
made, comparisons can be made with the height for the population of
students in 1920.

To continue with the example, suppose you measure the height of a
random sample of 200 students and find that their mean height is 67
inches. Your sample of 200 is only one of many such samples that could
be drawn from students on a large university campus. Therefore, even
though the mean of 67 inches is greater than 64, you should not immedi-
ately conclude that today’s student body is taller than the 1920 group.
Instead, the hypothesis-testing procedure must account for the fact that,
since your particular sample is only one of a large number of possible
samples, the 67-inch mean is only one of a number of possible sample
means. Some samples may yield sample means less than 64 inches.

The theory of hypothesis testing provides a method for making
inferences about the entire population from sample data. The method
recognizes that, since the inferential statement is based on sample infor-
mation, we can never be totally certain of the validity of the inference
about the population.'” Instead, one must allow for some probability
that an incorrect conclusion has been drawn. Statistical theory allows us
to define the likelihood of making such an incorrect inference. For
cxample, based on the sample mean of 67 inches, you might conclude
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that today’s student body is taller than the 1920 student body but that
thereis a 1 percent chance that you have drawn an incorrect conclusion.
Inferential statements based on sample data never yield conclusions
about the population values that are 100 percent certain.

In the food expenditure regression problem, the hypothesis was
advanced that family food consumption increases as income increases.
Since hypotheses are stated in terms of the values of the population
parameter, this hypothesis is equivalent to the hypothesis that B is
greater than zero.'® The discussion now turns to the hypothesis-testing
procedure, a technique that allows one to draw inferences about the
population parameter from a sample estimate of that parameter.

In order to understand hypothesis testing, it is important to reiterate
that we have been working with only one sample from the population.
Just as one could have multiple samples of students, it is possible to
draw multiple samples of families. If we did this, the regression proce-
dure outlined in Chapter 1 could be used to generate additional esti-
mates of 8 which would probably not be identical to our earlier estimate,
since the samples are different. Some of these b’s will be very good in the
sense that they lie close to the true, but unobservable, 8. Others will be
bad in the sense that they lie some distance from 8. Qur problem is that
we have no way of knowing if ours is a good or bad estimate of 8.

Suppose that a method existed to compute what we will call a test
value, tv, such that there was only a 5 out of 100 chance of getting an
estimate that overstates 8 by more than this test value. In other words,
out of every 100 samples drawn, only 5 would generate b’ that overstate
B by more than tv. If 8 were zero, this implies that only 5 out of every 100
estimates would be so bad that they would yield a value of b greater than
this test value. Thus we could argue that if 8 were zero, the probability of
getting an estimate of B the size of tv or greater would be very low—expli-
citly, 5 percent. Suppose that for our data set the value of tv is .022 (we
show later how this number is derived).

For the food consumption problem, we wish to investigate the possi-
bility that there is no relationship between consumption and income-—
that is, that 8 is zero—versus the possibility that food consumption
increases as income increases—that is, that 8 is greater than zero. In our
simple regression equation, we obtained a b of .058, which is clearly
greater than zero.'” The test value tells us that if the population value of
B is zero, there is only a 5 percent chance of obtaining estimates of 8
greater than .022. Therefore, if 8 is zero, it is quite unlikely that the
estimated regression coefficient would be greater than .022. Our b is
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greater than .022. Based on the low probability of this occurring if 8 is
zero, we say that we are willing to reject the statement that 8 is zero in
favor of the statement that B is greater than zero. There is at most a 5
percent chance that we have rejected the statement that 8 is zero when
indeed it is zero. In the language of hypothesis testing, we have rejected
the null hypothesis that food consumption is invariant to income level (8
=0)in favor of the alternate hypothesis that food consumption increases
as income increases (8 > 0).

Hypothesis testing is analogous to decisions reached in courts of law.
Under the court system, a defendant is brought to trial and he or she is
assumed to be not guilty. For the judge or jury to reject the assumption
of not guilty in favor of the alternate finding of guilty, sufficient evidence
must be produced. In the court system, errors can be made; innocent
defendants can be found guilty and guilty individuals can be found not
guilty. Under a legal system where the evidence must show “beyond a
shadow of doubt” that the assumption of nonguilt is to be rejected, there
is a primary concern for the inferential error of the first type—that is, of
convicting an innocent person.”

Just as the defendant is assumed not guilty until proven guilty, in
hypothesis testing the null hypothesis is assumed true until there is
sufficient evidence that it is not true. Likewise, just as inferential errors
can occur in courts of law, inferential errors can also occur in hypothesis
testing. Again, we are particularly concerned with an inferential error of
the type that occurs if one rejects the null hypothesis in favor of the
alternate when the nuil hypothesis is actually true. Instead of simply
stating that the analyst should reject the assumption that the null is true
in favor of the alternate if the evidence suggests it “beyond a shadow of a
doubt,”the hypothesis-testing procedure allows the investigator to speci-
fy an exact probability of making an inferential error—that is, allows
the investigator to define how big the “shadow of a doubt” is. Most
commonly, 1, 5, and 10 percent probabilities are chosen; however, there
isnothing that prevents the analyst from using other probabilities of this
type of inferential error.”’ When the researcher can reject the null
hypothesis that 8 = 0 in favor of the alternate, the regression coefficient
is said to be significant, which is short for significantly different from
zero at a stated probability. The level of significance depends on the
probability the investigator has assigned to rejecting the null when it is
indeed true.

In Table 2, the double asterisks next to the coefficient on the cohabita-
tion variable imply that this coefficient is significant at the 1 percent
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level of significance (this is how “p <.01”in that table is to be read). This
means that, in rejecting the null hypothesis that cohabitation has no
effect on marital satisfaction (8 = 0) in favor of the alternate that there is
an effect, there is at most a 1 percent chance that we have rejected the
null hypothesis that 8=0 when indeed 8 is zero. Likewise, as will be seen,
the t ratios reported beside the regression coefficients in the housework
example of Table 3 can be used to determine whether or not a coefficient
is significant.

The Testing Procedure

The formal procedure used to test hypotheses concerning the value of
the population parameter is comparable to the procedure discussed
earlier. First, a hypothesis concerning the value of the population param-
eter is formulated. This hypothesis is referred to as the null hypothesis,
denoted Hy, and is assumed to hold unless sufficient evidence is found to
reject it. The null hypothesis in the food consumption problem is that 8
is equal to zero (this is written as Ho:8 = 0). Second, the test value
method (to be discussed later) is used to compute a number, tv, such that
if Ho is true, there is a low prespecified probability of obtaining an
estimate that overstates 8 by more than tv. The chosen probability is
referred to as the level of significance; we will use 5 percent for the time
being. Thus, on average no more than 5 percent of all samples will
produce b’s that are greater than the population parameter by more than
this test value when the null hypothesized value of 8is the actual value of
B. Third, the difference between b and the hypothesized value of 8 is
computed. Finally, the following criterion is used to test the null
hypothesis:

(1) Reject the null hypothesis if this computed difference is greater
than the test value.

(2) Do not reject the null hypothesis if this difference is less than or
equal to the test value.

Statement 1 in the criterion says that if the difference between the
estimate and the hypothesized value is greater than the test value, the
null hypothesis is to be rejected, since there is only a 5 percent chance
that, if the null is true, an incorrect inference about the population
parameter will be made. If, on the other hand, the difference is less than
or equal to the test value (statement 2 of the criterion above), one cannot
feel confident in rejecting the null hypothesis, since 95 percent of the
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samples will produce b’s that vary by no more than this amount from 8
when the null hypothesized value of 8 is the actual value of 8.

Note from the above criterion that only rejection or nonrejection of
the null hypothesis is possible. Nonrejection does not imply that one
accepts the null hypothesis. This is because the procedure outlined
previously only tells us the probability of rejecting the null hypothesis
when it is true. This is analogous to the court example where the finding
is “not guilty” instead of “innocent.” The level of significance does not
tell us anything about the probability of accepting the null when it is
false. On the other hand, if the null hypothesis is rejected, it is usually
stated that the alternate hypothesis, often denoted H,, is accepted. It is
for this reason that the relationship that the researcher predicts between
the independent and dependent variable is stated as the alternate
hypothesis.

We have now formulated the concept of the null hypothesis and the
criterion used to test that hypothesis. The hypothesis-testing procedure
will be complete once the method for constructing the test value (tv) has
been presented. As will be shown, the test value depends on (1) the
estimated variability of the estimates of 8 from sample to sample and (2)
a probability distribution.

The Standard Error of the Estimated Coefficient

The standard error of the regression coefficient is a measure of the
amount of variability that would be present among different b’s esti-
mated from samples drawn from the same population. While it is true
that equation 3 in Chapter 1 provides a unique estimate of 8, it is also the
case that if a different set of data were drawn from the population, a
different estimate of 8 would probably result. Statistical theory allows
us to estimate how much variability there would be among all these
estimates (that is, allows us to estimate the standard error) just by taking
information from one sample.

In essence, the standard error measures how sensitive the estimate of
the parameter is to changes in a few observations in the sample. To
understand what is meant by sensitive, consider Figure 7. Panel A
presents two samples from population A, panel B presents two samples
from population B, and panel C presents two samples from population
C. In each case the ordinary least squares regression lines are also
presented. The figure is constructed so that, with the exception of the
circled observations, the data points are the same for any given panel




Figure 7: Sensitivity of Regression Line to Changes in Observations

(i.e., within lettered pairs). In the case of the circled observations, within
a given panel the values of the X’s have remained unchanged while the
associated Y values have changed. It is apparent that regression coeffi-
cients estimated from either population A or B are extremely sample-de-
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pendent. In both situations a change in a few of the observations results
in a large change in the slope of the regression line and hence a large
change in b. The data drawn from population C, however, are neither
scattered nor clustered. In this instance, a change in a few of the
observations will not alter b substantially.

What characteristics do the data in panels A and B have which do not
appear in panel C? In A the amount of variability of the dependent
variable Y (measured on the vertical axis) which cannot be attributable
to variations in X is great relative to that in data set C. In panel B the
variations in X are considerably less than the comparable variations in
the independent variables shown in Panel C. Each of these characteris-
tics is positively related to the standard error of a regression coefficient
and creates additional uncertainty regarding the true parameter S.

The measure of the standard error’ allows one to make inferences
about how sensitive the estimate of 8 is to changes in sample composi-
tion without taking another sample. Because a large standard error casts
doubt on the estimate, the magnitude of the test value depends positively
on the size of the standard error. The standard error, generally repre-
sented as s, is often reported along with the regression coefficients, as in
Table 4.

The Student’s t Distribution

A probability distribution® is also used in the hypothesis-testing
procedure. To better understand the role that probability plays in the
testing procedure, reconsider what has been said thus far about regres-
sion parameters. First, it has been stressed that the population parame-
ter can never be observed. Second, it has been noted that the estimate of
the parameter from any sample is but one possible estimate; additional
samples from the population yield additional, probably different esti~
mates. Not all estimates are equally “close”to the population parameter.
Finally, it is desired to draw inferences about the population parameter
from one estimate of the parameter. In the food consumption problem,
the b of .058 is to be used to make inferences about the population S.
Thus one would like to know if .058 is one of the estimates that is close
to B.

A question of this nature can never be answered, since the value of the
population parameter is unobservable and hence unknown. A statement
can, however, be made regarding the probability of obtaining an esti-
mate with a given degree of closeness to the assumed, null hypothesized,
value of 8. Analogously, probabilistic statements can be made concern-
ing the degree of closeness associated with a given probability.
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These statements can be made because statisticians have determined
the probability distribution of the fraction (b - B)/sv. In general, this
fraction is distributed according to what is known as the Student’s t
distribution. (A discussion of how statisticians are able to determine the
probability distribution of (b - 8)/ss is beyond the scope of this book.)
The Student’s t distribution allows one to make probabilistic statements
concerning the size of the fraction (b - 8)/s,. The distribution relates the
probability that the fraction will be no larger than what is known as the t
statistic, denoted t..

For a stated probability, the t statistic depends on the degrees of
Jfreedom, defined as the number of observations in the problem (the size
of the sample) minus the number of coefficients estimated. Values for
the Student’s t distribution are given in Appendix B. In the consumption
problem, there are 48 degrees of freedom, since two coefficients (a and b)
were estimated and there are 50 observations.** (See also Figure 8.)

For any given problem with 48 degrees of freedom, the t distribution
states that for 5 percent of the samples, the fraction (b - 8)/s, will be
larger than 1.677. This implies that the probability is 5 percent that the
following inequality holds:*’

(b-B)/sv > 1.677 7
Multiplying this inequality by sy yields
(b~ B)>1.677ss (8]

Inequality 8 means that if the null hypothesis is true, only 5 percent of
the estimates will exceed the null hypothesized value by more than
1.677s,. Thus 95 percent will overstate the null hypothesis by less than
this value.

Forming Test Values

The expression 1.677s, is an example of a test value. More generally,
a test value is formed by multiplying the appropriate t statistic by the
standard error of the estimator. In the food expenditure problem, s, =
.013. Since tssp = (1.677)(.013) = .022, the test value is .022. The null
hypothesis can be rejected if the difference between the estimated coeffi-
cient and the hypothesized value is greater than this test value. In the
case where the hypothesized value is zero, this difference is always equal
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5% of total area
under curve

Figure 8: t Distribution

to the estimated coefficient, b, in this case .058. Thus, for the food
expenditure problem, the null hypothesis can be rejected in favor of the
alternate hypothesis that a positive relationship exists between income
and food expenditure, since .058 > .022. More generally, it follows that
the null hypothesis that 8 = 0 can be rejected in favor of the alternate
hypothesis that it is greater than zero if

b > Sbts [9]

The testing procedure can also be used to test hypotheses concerning
hypothesized values of 8 other than zero.”® Suppose, for example, that
one wished to test the hypothesis that a one-dollar increase in income is
associated with a 4-cent increase in family food expenditure against the
hypothesis that it is associated with a larger increase. In this case, the
nuil hypothesis is Ho:8 = .04, and the alternate hypothesis is H.:8 > .04.
The difference between .04 and our estimate of .058 is .018. Given that
this is less than the test value of .022, one cannot reject the null hypothe-
sis. On the other hand, the reader should be able to verify that the nuil
hypothesis, that 8 = .03, could be rejected at the 5 percent level of
significance in favor of the alternate hypothesis that 8 > .03. In this
instance we say that the coefficient is significantly greater than .03.

The Role of Standard Error and Sample Size

The statistical inference made about the population parameter from
its estimate clearly depends on the size of the test value, which in turn
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depends on the size of the standard error of the estimated coefficient and
on the size of the appropriate t statistic. A larger test value means, other
things being equal, that it is harder to reject the null hypothesis in favor
of the alternate. If the standard error in the food expenditure problem
had been larger, the test value would also have been larger and different
inferences might have been drawn about the population parameter.

As noted in the discussion of the t distribution, for a given level of
significance, the size of the t statistic, and hence the size of the test value,
is influenced by the size of the sample.”’” That the number of observa-
tions in the sample will influence the size of the interval is reasonable,
since a small sample is less likely to be representative of the population
than a larger sample. The t statistics given in Appendix B illustrate that
as the degrees of freedom decrease, the t statistic increases. Thus, for
example, if the food expenditure sample size had been smaller, the
appropriate t statistic would have been larger. As aresult, the test value
would also have been larger and different inferences might have been
drawn about the population parameter.

Changing the Level of Significance

Although the 5 percent level of significance is suitable for much
empirical research, in some instances it is desirable to have a smaller
probability of rejecting the null hypothesis when it is true. As can be seen
from Appendix B, for a given number of degrees of freedom the t
statistic (and hence the size of the test value) increases as the level of
significance decréases.”® Applying the method discussed earlier, one
finds that for the food expenditure problem, at the 2.5 percent level of
significance the test value is .026 = tsp = (2.011)(.013). In a similar
fashion, at the 1 percent level of significance the test value is .031. Notice
that it might be possible to reject a hypothesis at the 5 percent level of
significance but not at a lower level of significance. Often researchers
will indicate at what level a variable is significant. In the cohabitation
example of Table 2 the single asterisk indicates that a coefficient is
significant at the 5 percent level; the double asterisk indicates signifi-
cance at the 1 percent level. The lowest level at which a null hypothesis
can be rejected is called by some authors the prob value or p value of a
test (for an example of this, see Table 2).

t Ratio

Simple algebraic manipulation allows us to rewrite equation 9 as
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(b/sp) > ts [10]

The expression b/sp is referred to as the ¢ ratio. The reader can check
that for the food consumption problem it is 4.462. Researchers often
report this number in lieu of the standard error. Thus, for example, the
numbers beside the regression coefficients in the housework time exam-
ple (Table 3) are t ratios and not standard errors.

The null hypothesis that 8 =0 can easily be tested by computing the t
ratio and comparing it to the appropriate t statistic. If the t ratio is
greater than the appropriate t statistic, the null hypothesis can be
rejected at the specified level of significance. In addition, the t ratio
provides a way of determining the level of significance at which the null
hypothesis can be rejected. For example, Appendix B demonstrates that
for the food expenditure problem, the hypothesis that 8 = 0 can be
rejected at the 0.5 percent level of significance. (For 48 degrees of
freedom, the t statistic at the 0.5 percent level of significance is 2.682,
substantially less than the t ratio of 4.462.) For a similar reason, the t
ratio of 3.17 reported beside the number-of-rooms variable in the
housework time example (Table 3) implies that the null hypothesis that
B =0 can be rejected at the 0.5 percent level.

Just as the examples of Chapter 2 do not provide a uniform format
for tests of significance, neither do computerized regression programs.
For example, as can be seen from Appendix C, SPSS output provides
information on standard errors, while SAS output provides informa-
tion on t ratios as well as standard errors.

Left-Tail Tests

The reader will note that all of the alternate hypotheses presented
thus far have taken the form, “B is greater than some number.” In order
to test the corresponding null hypothesis and make inferences about the
alternate hypothesis, we have computed by how much our estimate
overstates the null hypothesized value and then compared this differ-
ence to the test value. This type of test is called a right-tail test. It gets its
name from the fact that in this instance the alternate hypothesis is
positive and lies to the right of the null hypothesized value. There are, of
course, instances in which one is interested in alternate hypotheses that
concern negative values. In this case a left-tail test is in order. Left-tail
tests are appropriate when the alternate hypothesis is of the form that
the population parameter is less than some specified number, such as
zero. In such a case, we would have: Ho:8 = 0, Ha: 8 < 0.
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A test value for a left-tail test can be computed in the same manner as
a test value for a right-tail test. For example, for a left-tail test with 48
degrees of freedom, only 5 percent of the sample will yield b’s that
understate the population parameter by more than —1.677ss. Note that
once again we are comparing the difference between the estimate and the
null hypothesized value to some test value. Here, however, if we use (b -
B) as a measure of “understatement,” the difference is negative since the
alternate hypothesis lies to the left of the null hypothesis, not to the
right. Thus we are saying that in only 5 percent of the cases is this
difference more negative than ~1.677sy; that is, in only 5 percent of the
cases is (b - B) < -1.677s,.%

Just as we computed a t ratio for a right-tail test, we can also compute
a t ratio for a left-tail test. In this case, however, we reject the null
hypothesis that the population parameter is zero if b/sy < t,.*°

Two-Tail Tests

Occasionally theory does not suggest the direction of the relationship
between the dependent and independent variables. In this case a two-tail
test is appropriate. A good example of where this arises is found in the
relationship between cohabitation and marital satisfaction. It could be
argued that because cohabitation before marriage allows couples to
work through various problems, a positive relationship exists between
cohabitation and marital satisfaction. On the other hand, cohabitation
prior to marriage may decrease marital satisfaction because couples tire
of each other or because the “newness” of the relationship has worn off.
Thus we are not sure whether to argue for a positive or a negative
relationship between marital satisfaction and cohabitation. This is an
example of an instance where a two-tail test is appropriate. In such a
test, the null hypothesis is Ho:8 = 0, and the alternate hypothesis is
H.:B#0.

A two-tail test must consider the possibility that the estimate over- or
understates 8. From the previous discussion, we know that with 48
degrees of freedom, there is a 5 percent chance that an estimate over-
states the population parameter by more than 1.677s.. Likewise, there is
a 5 percent chance that it understates the parameter by more than
-1.677s,. Combining these statements, we can say that there is a 10
percent chance that the estimate differs either positively or negatively
from the population parameter by more than 1.677s,. In absolute value
terms, t3111is means that there is a 10 percent chance that |b - B| >
1.677ss.

1
|
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If B is zero, this implies that 10 percent of all possible samples will
generate estimates of 8 that in absolute value terms are greater than
1.677s,. Similarly, the reader can verify from Appendix B that with 48
degrees of freedom, if B is zero, 5 percent of all samples will generate
estimates of B that in absolute value terms are greater than 2.011s.
(Look at 48 degrees of freedom and the 2.5 percent level of significance.)
More generally, when we use a two-tail test rather than a one-tail test,
for a given t statistic we must double the probability of rejecting the null
hypothesis whenit is in fact true. In the cohabitation example (Table 2),
the authors report that the coefficient on the cohabitation variable is
statistically different from zero at the 1 percent level of significance.
Since a two-tail test is appropriate here, the authors used a t statistic
associated with the 2 percent level of significance for a one-tail test.

Table 5 presents a summary of right-tail, left-tail, and two-tail tests.
The procedure for computing t ratios is also summarized. The reader is
cautioned to remember that for any t statistic, the level of significance is
always twice as large in a two-tail test than in a one-tail test.

Confidence Intervals

Two-tail tests are sometimes made by creating what are called
confidence intervals rather than by using the test value method outlined
here. Just as we can discuss the probability that the estimate differs from
the population parameter by more than a certain amount, we can also
discuss the probability of the difference being less than or equal to this
value. For example, with 48 degrees of freedom, we know that 10
percent of all estimates will, in absolute value terms, differ from B by
more than 1.677sp; 90 percent will differ by 1.677s, or less. This implies
that in 90 percent of the cases

|B-b| <1.677ss [11]
By rewriting inequality 11 to remove the absolute value signs, and by
adding b to each term, it follows that there is a 90 percent probability
attached to the statement

b-1.677ss < B<b+ 1.677s» [12]

Statement 12 is in the form of a confidence interval. It says that 90
percent of the intervals defined by the end points b — 1.677s, and
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b + 1.677s, will bracket the value of the population B. If instead we had
wished to construct a 95 percent confidence interval, the end points of
the interval would have been defined as b—2.011s, and b +2.011s,. More
generally, the form of the confidence interval is (b — tisp, b + t:s). The test
criterion is: (1) reject the null hypothesis if the null hypothesized value
does not lie in the confidence interval, (2) do not reject the null
hypothesis if the null hypothesized value lies in the confidence interval.

F Statistic

In the case of multiple regression analysis, there are instances when
one might wish to test hypotheses about all or some subset of the
regression coefficients considered simultaneously. This is especially true
if the investigator finds that it is not possible to reject the null hypothesis
that the individual coefficients differ from zero yet feels that, taken
simultaneously, the independent variables significantly affect the depen-
dent variable.

In multiple regression analysis an investigator anticipates that each of
the independent variables included in the equation will influence the
dependent variable. It is of course possible that none of the independent
variables are found to be significantly related to the dependent variable.
More explicitly, if there were two independent variables in the equation
but, using the above techniques, neither was found to be significantly
different from zero at acceptable levels of significance, we could not
reject either Ho:8: = 0 or Ho:82 = 0.

Independently testing the two null hypotheses Ho:8: =0 and Ho:8:=0
is not the same thing as testing the null hypothesis that Ho:8: = 82= 0.
The latter is a test of whether all of the coefficients taken together are
simultaneously equal to zero, while the former tests whether each indi-
vidually is equal to zero. In regression analysis it is possible not to reject
the hypothesis that the coefficients individually are zero while at the
same time rejecting the notion that simultaneously the coefficients are
all zero. To fail to reject the null hypothesis that simultaneously the
coefficients are zero means that there is reason to believe that the entire
model is not statistically significant. The test for the simultaneous
equality of all regression coefficients (or some subset thereof) equaling
zero is done through the use of the F statistic.

One might wonder how it is possible to reject the null hypothesis
Ho:8: = B2 = 0 when it is not possible to reject either the null hypothesis
Ho:81 = 0 or the null hypothesis Ho:8: = 0. As one explanation, consider
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the following example: Suppose that in our food consumption example
we had used family size and the number of children (under the age of 21)
as the only two independent variables. These two variables are highly
correlated.*? As will be seen in Chapter 5 in the discussion of multicollin-
earity, when two independent variables are correlated, the estimated
standard errors of the regression coefficients are larger than they would
be in the absence of one or the other correlated independent variable.
Thus we may be unable to reject the two null hypotheses Ho: 81 = 0 and
Ho:B: = 0. Instead of testing each coefficient separately, we could test
whether, taken together, the two independent variables affect food
consumption. Here the null hypothesis Ho:8: = B2 = 0 is expected to be
rejected in favor of the alternate hypothesis that one or the other of the
independent variables is different from zero.

Just as hypothesis testing regarding a single regression coefficient
depends on the sample data and the Student’s t distribution, so the F
statistic relies on the sample and a probability distribution called the F
distribution. The use and interpretation of the F statistic are similar to
those of the t statistic. Just as a t ratio can be computed to aid in
hypothesis testing, an F ratio can also be constructed and compared to
an F statistic obtainable from a table published in most statistics books
(see Appendix D for a list of such books). The F ratio is related to the
degree of explanatory power of the entire regression equation, since it is

where N is the number of observations and k is the number of indepen-
dent variables in the regression (excluding the intercept term).

If the F ratio is greater than the value of the F statistic, found in the
table, one can reject the null hypothesis that the regression coefficients
taken in combination are equal to zero. In the consumption example,
the value of the F ratio is 19.66, while the F statistic is 3.19 for the 5
percent level of significance with degrees of freedom of (2, 47). (The
degrees of freedom are expressed as two numbers separated by a
comma. The first represents the number of coefficients being tested
simultaneously, while the second is the number of observations used in
the regression minus the number of regression coefficients estimated in
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the multiple regression). One can thus reject the null hypothesis that 8, =
B2 = 0 at the 5 percent level of significance, since 19.66 > 3.19.

What Tests of Significance Can and Cannot Do

Before turning to Chapter 4, it is important to emphasize the strengths
and limitations of the hypothesis-testing procedure. Its strength is that
in the presence of randomness, the procedure allows us to draw
inferences about the population parameter. Since any estimate of a
population parameter is likely to have some random component, this is
asubstantial benefit. In this analysis we have stressed randomness due to
sampling error, but other sources of randomness also exist. For exam-
ple, measurement error could lead to some randomness even if one had
information on the entire population (this is discussed in Chapter 5).

The weakness of the method is that researchers may forget what
exactly it is they have tested. Finding that a coefficient is significantly
different from zero does not imply that the corresponding variable is
necessarily important. Statistical significance does not necessarily imply
political, social, or economic significance. The relationship found may
be so small—even though statistically significant—that the variable is of
little consequence. For example, most researchers have found that
persons with more education earn higher incomes. The more relevant
question is how large a relationship exists. If an additional dollar spent
on schooling succeeds in increasing annual income by only 2.5 cents,
education may not be a valuable economic investment. To answer the
question of importance, one needs some a priori idea of how big the
relationship need be to justify the conclusion that education is an
important determinant of income. In the education example, one might
conclude that a 2.5 percent return on the investment is of little conse-
quernce, since the individual can get a substantially higher return on a
dollar invested in virtually any other type of investment.*’

4. EXTENSIONS TO THE
MULTIPLE REGRESSION MODEL

In the food consumption example, observations were (hypothetical-
ly) made on a set of families at one point in time with the measured
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values of family income and family size used to derive the results and test
hypotheses. As the several examples drawn from various disciplines
suggest, linear regression is not restricted to one form of data, nor is it
limited to hypothesis testing. This chapter addresses these extensions.

Types of Data

The data used in the food consumption example are known as
cross-sectional data, since they have been generated by a slice or cross-
section of the population. A second important data form is zime series
data, in which variables are measured at different points in time. Annual
or quarterly gross national product (GNP) data and national divorce
rates for the past 30 years each constitute time series data sets. Several of
the examples presented earlier were based on time series data.

Regression estimation techniques and interpretation of the results are
exactly the same for time series data as for cross-sectional data. Consid-
er, for example, a study of the relationship across time between imports
into the United States and the level of GNP. One might hypothesize that
imports into a country during a year are positively related to the
country’s GNP in that year. If the relationship is assumed to be linear, it
can be written as

Mt o+ ﬁGNP‘

where M denotes the dollar value of imports observed in year t and
GNP represents the level of GNP during that same year. Using the
techniques discussed in previous chapters, historical values of M and
GNP can be used to estimate @ and 8.

When studying behavior over time, it is sometimes hypothesized that
the value of a variable in one time period is dependent on its value in the
previous period. This is reasonable if behavior is conditioned by habits
that persist over time. In such cases the previous period’s value of the
dependent variable can be used as an independent variable and is called
a lagged dependent variable. For example, in the previous problem one
might specify that imports in year t depend on both the level of GNP in
year t and on the level of M in year t-1. That is,

M; = a + BiGNP: + f2:M

A more complex form of data can be created when cross-sectional
information is combined over time to form longitudinal data sets.
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Observations on a set of families over time or financial data collected
from a sample of counties in the United States observed for several years
would each constitute longitudinal data sets.

Longitudinal data can be analyzed in a variety of ways. If observa-
tions from only one time period are used, the data constitute a simple
cross-section. Alternatively, one observational unit (e.g., a family) may
be analyzed across time, thereby creating a time series analysis. Finally,
researchers sometimes analyze a longitudinal database by combining all
of the cross-sections into a pooled cross-sectional analysis. While statisti-
cal procedures needed to carry our such an analysis are more complex
than the procedure outlined earlier, the underlying principles still hold.

In addition to their time dimension, data can also be classified
according to the degree of aggregation across behavioral units. Micro
data measure variables within the behavioral unit itself (e.g., the family);
aggregate data measure behavior for a group of such behavioral units.**
A sample of 1980 GNP data for a set of countries forms a cross-section
of aggregate data, while the GNP for Mexico during the period 1950-
1980 would constitute a time series of aggregate information. The food
consumption example consists of micro cross-sectional data; if one
observed wheat sales of an individual farm for the period 1930-1980, the
resulting data set would constitute micro time series data. The form of
the data does not, in general, alter the procedures nor the interpretation
of results. Certain of the statistical problems discussed in Chapter 5 are,
however, more frequently associated with the particular form of the
data.

The R” statistics obtained from different types of data are likely to
differ. First, since behavior is often conditioned by past actions, thereis
generally less randomness when a unit is observed across time than when
a cross-section of units is studied. For example, the amount of driving
you do this year is probably not too different from the amount you did
last year. On the other hand, if one were to observe miles driven for a
cross-section of individuals, the data set might contain salesmen who
travel for a living and retired persons who drive only to church on
Sundays. Because of this phenomenon, one will generally find higher R?
values with time series data than with cross-sectional information.

Second, aggregate data from many firms or households hide certain
differences in behavior among these units, since “high” and “low” values
cancel each other. This “averaging” means that there is less variability in
the dependent variable to be explained by the independent variable(s)
and often results in higher R? values for the aggregate information than
for comparable micro data.
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These possible differences in the variability of the data constitute a
major reason that one should not simply look at the R” results of
studies and praise those in which the ratio is “high” while scoffing at
those with low R? values. It is quite possible for all regression coeffi-
cients to be significantly different from zero, and yet the coefficient of
determination may be very small. If testing hypotheses about the regres-
sion coefficients is the aim of the study, the coefficient of determination
should be considered only as additional information, not as the sum-
mary indicator of the quality of results.

Dummy Variables

Most of the independent variables discussed thus far are continuous
variables, since they can generally assume an infinite number of values.
Often, however, dummy independent variables are employed in regres-
sion analysis. Such variables, sometimes called categorical, dichoto-
mous, or binary variables, take on only the values of zero or one. The use
of such a variable is appropriate whenever the theory implies that
behavior differs between two different time periods (e.g., during Repub-
lican and Democratic administrations), or between two groups within a
cross-section (e.g., married and unmarried individuals). In the cohabita-
tion study (DeMaris and Leslie, 1984), a dummy variable (having
cohabited) was the focus of the analysis.

In the food consumption problem, theory may lead one to hypothe-
size that the purchase of food differs between farm families and nonfarm
families. The independent variable K can then be added to the regression
equation where K takes the value of 1 if the spending unit resides on a
farm and 0 if it is a nonfarm family (see Table 1, column 4). Assume that
one is interested only in the effects of income, I, and farm status, K, on
C. Estimates of the parameters can be derived using the techniques of
multiple linear regression analysis. The results from such an analysis are
C =1742.84 + .0601 - 599.16K. The coefficient on K indicates that, based
on the sample, food expenditures for farm families are estimated to be
$599.16 less than for nonfarm families with the same income. This can
be seen by substituting the two possible values of K (0 and 1) into the
estimated equation. For farm families (K = 1), the resulting equation
is simply 742.84 + 0.060I — 599.16 (or 143.68 + 0.060I). The estimated
relationships in Figure 9 illustrate that farm and nonfarm groups are
assumed to respond in the same way to changes in income. That is, the
regression lines have identical slopes, but the intercept term for farm
families lies $599.16 below that for nonfarm inhabitants.*
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Figure 9: Farm and Nonfarm Regression Lines

At times there may be more than two mutually exclusive categories
which a variable can assume. For example, the race/ethnicity of a
survey respondent may be classified as white, black, Hispanic, or other.
Again, dummy variables may be used to capture possible differences in
the dependent variable across these groups or time periods.*

In such situations, all but one of the possible groupings of the
classification variable are used as dummy variables. Thus, in the four-
way grouping on race/ ethnicity, three different dummy variables would
be formed; one group is “excluded” and serves as a reference group
against which comparisons can be made. It does not matter which group
is chosen as the reference group; the implications of the results will
remain the same. For example, if whites are chosen as the reference
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group, then three different dummy variables—Black, Hispanic, and
other—would be formed. The variable “Black” would be equal to 1 only
if the respondent was Black; otherwise, it would be 0. The variable
“Hispanic” would be equal to 1 if the respondent was Hispanic, 0
otherwise, and similarly for the “other” race group. The resulting
equation of a dependent variable Y regressed against one continuous
independent variable X and these dummy variables representing the
race groups would appear as

Y = o + 8:X + B:Black + B83Hispanic + 8,Other

Multiple linear regression analysis would yield coefficient estimates
on each of the included dummy variables. The intercept term reflects the
value of the dependent variable for the reference group, since for this
group all the dummy variables would be equal to zero. The coefficient
on each of the dummy variables is the estimate of the difference in the
value of the dependent variable between the group in question and the
reference group. Thus the coefficient on “Black” would estimate the
difference in the dependent variable between blacks and whites (the
reference group). The t ratio associated with the coefficient on a particu-
lar dummy variable can be used to test whether or not that group differs
statistically from the reference group.

Interaction Variables

Another extension of the linear regression model occurs when
interaction effects are included in an analysis. Two common types of
interaction effects are interactions between a continuous variable and a
dummy variable, and interaction between two continuous variables.

DUMMY INTERACTION EFFECTS

The food consumption equation used earlier assumed that, as I
increases by one dollar, food consumption spending for both farm and
nonfarm families will increase in an identical fashion (i.e., by about 6
cents). However, this may not always be a reasonable assumption.
Dummy interaction variables allow an investigator to posit that the
response to a change in a continuous independent variable differs
between classified groups.

Consider again the food consumption example with income and
farm/nonfarm status as independent variables. A dummy interaction
term yields the model




C=a+ B+ BK + B5(I)(K)

The coefficient B; estimates the effect of a one-dollar change in income
on food consumption for nonfarm dwellers, while for farm dwellers the
estimated effect of income is 8; + 83, since K = 1 for this group. The
estimate of 83 would therefore be the differential effect of a one-dollar
change in income on food expenditures between farm and nonfarm
families. Using the same data but including an interaction term between
the dummy variable K (farm/nonfarm residence) and the continuous
variable I yields the following regression results:

C = 746.44 + 0.0591 - 666.81K + 0.003(K)(I)

This implied graphical relationship between C and 1 is shown in Figure
10. Note that unlike Figure 9, the regression lines are not paraliel when
an interaction effect is included.

INTERACTION EFFECTS BETWEEN TWO CONTINUOUS VARIABLES

There are also instances in which analysts expect that two continuous
variables interact in their influence on a dependent variable. One exam-
ple of an interaction between two continuous variables which is cer-
tainly felt in winter is that produced by wind speed and temperatures on
the “wind chill.” At any temperature, increased wind speed will lower
the wind chill measure; likewise, at a given wind speed, lower tempera-
tures result in lower wind chills. The additional interaction effect means
that the effect of lower temperatures on wind chill is greater at higher
wind speeds.

Transformations

The previous case of interaction terms is one instance in which an
independent variable has been transformed. Since linear regression
worked well in that instance, it should not be surprising to find that
other types of transformation can also be used. Probably the most
common form of transformation is one that converts a nonlinear rela-
tionship between variables into a linear one.

Students of economics are probably familiar with “U-shaped” aver-
age cost curves which imply that the cost of producing a unit of output
declines at low levels of output and subsequently begins to rise at higher
levels. The resulting plot of average costs on the vertical axis and output
on the horizontal axis result in a graph that takes on the general shape of
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Figure 10: Farm and Nonfarm Regression Lines Allowing for Interaction

aU. Likewise, if a country’s population growth rate is 2 percent a year, a
plot of population against time will result in a curve that rises nonlinear-
ly. Since the 2 percent increase in population is being applied to a larger
and larger base, as time passes larger absolute annual increases in
population will result. Fortunately, in many such instances linear regres-
sion analysis can be used by transforming the nonlinear relationship
into an equivalent, but linear, form.

Suppose that two variables, L and M, are theorized to be related in
the following nonlinear manner:
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L=aM#B 4]

where o’ and B are two unknown parameters.’’ It is possible to rewrite
equation 14 in a linear form by taking the natural logarithm (abbrevi-
ated In) of both sides of the equality. This yields®*

InL=lne¢+8InM [15]

By redefiningthetermsin 15as Y=InL, « =Ina’, and X =InM, equation 15
can be expressed as

Y=a+gX [16]

Since this equation is identical to the simple linear regression equation 1
in Chapter 1, the techniques discussed there will yield estimates of & and
B as well as their associated statistics. If the estimated value of 8in 161s
found, for example, to be —1.2, the implication is that a one-unit increase
in the natural logarithm of M is associated with a 1.2 unit decrease in the
natural logarithm of L. Another interpretation of the coefficient 1.2 is
that for each 1 percent increase in M there is an associated 1.2 percent
decrease in L.

Another method of handling nonlinear relationships with linear re-
gression is by squaring an independent variable. The resuiting relation-
ship is termed a polynomial model, since it results in the following
polynomial equation

Y=a+BX+BX [17]

This is a particularly interesting form of a nonlinear relationship, since it
suggests that the change in Y for each unit change in X depends on the
value of X.** Such a model can be used if an analyst believes, for
example, that the effect of age on a dependent variable declines as the
respondent ages. Likewise, equation 17 can trace out U- or inverted
U-shaped relationships between an independent and dependent vari-
able. Hence, this function would be used if an analyst expected housing
rents to increase as one moved away from the congestion of the central
business district (CBD), but after some distance away from the CBD
rents might begin to decline due to the costs of the long commute to
work. Higher-order polynomial functions can be estimated in a similar
manner.
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Prediction

Besides testing hypotheses, linear regression results can also be used
for purposes of predicting the value of a dependent variable for particu-
lar values of the independent variable(s). For the food consumption
example, the result of a multiple linear regression using the three inde-
pendent variables—income, family size, and farm or nonfarm resi-
dence—is

C=8375.25 + 0.0581 + 123.10S - 533.74K [18]

Equation 18 can be used for prediction. For example, for a farm family
of five with an income of $13,000, the prediction would be $1211.01 =
[$375.25 + (.058)($13,000) + ($123.10)(5) + (-$533.74)(1)].

Although regression results can be used for purposes of prediction,
several aspects of this usage deserve elaboration. Regression findings
may not be particularly useful for predicting values of the dependent
variable, even though the results indicate that the variables are signifi-
cantly related to a dependent variable. A small R? indicates that only a
small proportion of the total variability in the dependent variable can be
accounted for by the independent variables used in the equation. This
suggests that numerous other unmeasured or random factors also influ-
ence the size of the dependent variable. In such instances it is heroic to
predict particular values of the dependent variable on the basis of such
results. Likewise, if the t ratios for the regression coefficients are quite
low, one cannot have much confidence in the predicted results, since a
low t ratio implies considerable uncertainty about the true population
regression coefficient.

Since a set of regression coefficients is estimated from a single group
of data, one should be suspicious of predictions based on extreme
extrapolations from those data. For example, while one might use the
food consumption results to predict Canadian food consumption, one
would be ill advised to predict behavior in Cuba with these results.
Likewise, predictions for the year 2010 based on data collected over the
period 1960-1980 may prove to be extremely inaccurate.

An additional aspect of using regression results for forecasting is that
it may require predicting values for the independent variables. Errors in
estimating the values of these variables for the future will result in
forecasting errors for the dependent variable, even if the model itself is
perfect.




Examples

A wide variety of applications of multiple linear regression using
different types of data and alternative forms of variables are available in
the literature. Here we consider only three to demonstrate this range of
applicability.

EXAMPLE 1—-COMPUTER LITERACY

What factors influence “computer literacy™? This is the question
addressed by Lockheed, Nielson, and Stone (1985) in a study which
evaluated 413 New Jersey high school students enrolled in a computer
course. A “pretest” was given at the first meeting of the course in order
for increases in knowledge to be measured. Pretests also allow
investigators to standardize for differentials in knowledge at the outset
of an educational experience.

Multiple regression techniques were used to analyze the difference
between the final test score and the pretest, also termed the “gain score.”
Table 6 reports on two different specifications of the gain-score deter-
minations of ninth- and tenth-grade students. The results suggest that
those with higher pretest scores had higher gains in competency, that
females had smaller increments to their scores than did similar male
students, and that being in an accelerated math class had a positive
influence on test scores. In the second specification, access to an outside
computer was also found to affect test scores significantly, while the
other variables were not different from 0 at a 5 percent level of
significance.

EXAMPLE 2—SEASONALITY IN FERTILITY

Birth rates in the United States have consistently been higher in
September (conception in December) than in May (conception in
August). This has led some demographers to hypothesize that the
weather influences the frequency of conception and hence the monthly
birth rate.

Seiver (1985) examined monthly birth rates in the United States for
the period 1947-1976 and discovered that there was a significant reduc-
tion over time in the magnitude of the April-May “trough” (in birth
rates). He then analyzed this change in the May seasonal effect using
cross-section regression techniques based on the change in birth rates in
the various states between 1960 and 1970. He hypothesized that changes

-




TABLE 6
Determinants of Gain Scores in Computer Literacy
Among New Jersey 9th- and 10th-Grade Students

Model®
Variable 1 2
Intercept 7.248 5.826
Pretest score 0.345 0.295 ;
(4.00) (3.38) :
Female® ~0.805 -1.020
(2.38) (2.41)
In accelerated math class® 2.128 2.120
(5.61) (5.62)
Access to computer outside class? 0.978
2.53)
Use school computer only in class® 0.499
(1.09)
Play computer games® 0.126
0.75)
Ask teacher for helpd 0.229
(1.66)
R? 246 .280
R? 236 258

Number of observations = 231

SOURCE: Lockheed, Nielson, and Stone (1985). Reprinted by permission.

a. Numbers in parentheses are absolute values of t ratios.

b. A dummy variable set equal to one if respondent had this attribute, zero other-
wise.

c. A 5-point scale of frequency of playing computer games (1 = never, 5 = several
times a week).

d. A 5-point scale of frequency of asking teacher for help (1 = never, 5§ = several
times a day).

in the state labor force participation rates of women between 1960 and
1970 (LFP), changes in median family income during the decade (INC),
changes in the proportion of high school graduates in a state between
1960 and 1970 (HS), and the increase in air conditioning use in a state
(AC) would all affect the change in the May birth rate. His resulting
regression equation was

MAY BIRTH = 0.19 — 1.74LFP + 0.014INC — 0.18HS + 1.76AC

(0.38) (1.48)  (0.046)  (1.63)  (0.25)
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where the numbers in parentheses are the estimated standard errors of
the regression coefficients. An examination of these results suggests that
the only variable found to be statistically significant was the use of air
conditioning. Apparently, as air conditioning has provided a more
pleasant environment during the summer months, April-May births
have tended to be more in line with other months.

EXAMPLE 3—EFFECTS OF AUTOMOBILE SAFETY STANDARDS

The effectiveness of public policies can sometimes be evaluated
through regression analysis. The National Traffic and Motor Vehicle
Safety Act of 1966 required certain safety features such as padded
dashboards and head restraints to be installed in all new vehicles.
Graham and Garber (1984) analyzed the effects on highway death rates
of this legislation. Since such legislation did not affect older vehicles,
they used the proportion of miles driven by regulated cars as a primary
independent variable to explain annual auto, truck, and bus death rates
in the United States during the period 1947-1980. Numerous other vari-
ables were used as well in their regression equation, including time to
account for the long-term historical decreasec in highway deaths per
million miles of vehicle travel.

Table 7 reproduces one set of Graham and Garber’s results which
indicate that, indeed, the Vehicle Safety Act did significantly reduce
death rates on the highway. To show this even more clearly, the authors
also “predicted” what traffic death rates would have been during the
period after 1966 if all other variables had remained unaltered but there
had been no safety regulation. They conclude that the act reduced the
death rate by 19-29 percent. Such counterfactual analysis provides a
convenient method for summarizing the effects of particular indepen-
dent variables on a dependent variable.

5. PROBLEMS AND ISSUES
OF LINEAR REGRESSION

The advent of the computer and numerous computer packages has
made linear regression analysis accessible to nearly everyone. The use of
such computer packages is normally very easy; however, their purely
mechanical application is not appropriate. Although the preceding




TABLE 7
Regression Estimates for Death Rate Equation

Regression Coefficient

Independent Variable (t ratio in parentheses)
Intercept -2.84
(-0.85)
Proportion of miles driven by regulated cars -1.31
(—2.36)
Average speed on main rural highways 0.02
0.43)
Per capita alcohol consumption by adults 1.38
(1.51)
Proportion of licensed drivers under age 25 12.20
(0.99)
Proportion of miles driven by trucks 12.93
(3.50)
Proportion of miles by compacts and subcompacts 0.74
(0.36)
Proportion vehicles in no-fault states -0.93
(-0.73)
Cost of accident index 0.14
(0.86)
Real earned income per working age adult 0.59
(2.14)
Percentage urbanized -2.78
(-1.09)
Time -0.16
(—6.14)
* =0.981

Number of observations = 34

SOURCE: Graham and Garber (1984). Reprinted by permission.

discussion may seem to suggest that regression analysis is a straightfor-
ward exercise without pitfalls, unfortunately this is not the case.
Regression analysis, especially hypothesis testing, is based on several
important assumptions. Among them are (1) that the correct equation
is being used—that is, the proper variables were included as independent
variables and the proper functional form was used; (2) that the variables
are measured accurately; (3) that the independent variables are indepen-
dent of each other; (4) that the data constitute a random sample; and (5)
that the residual error term is “well-behaved.” (Recall that the residual
error term refers to the difference between the observed value of the
dependent variable and its value as predicted from the estimated regres-
sion equation.) Difficulties arise in regression analysis when any of these
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assumptions are violated. The computer packages do not automatically
solve these difficulties; it is up to the researcher to handle them.
Many analysts recognize the shortcomings of linear regression and
often attempt to overcome the resuiting problems. This final chapter
addresses some of the more common problems associated with linear
regression, the implications each problem has on the outcome, and some
of the methods that analysts use to circumvent the difficulties. We begin
with the issue that faces any analyst—specification of the model. After
examining the issues associated with data, we discuss various problems
related to the form of the error term in the regression equation. Appen-
dix D contains a list of books that discuss regression analysis. Some of
the more advanced books discuss the issues presented in this chapter.

Specification

Although all of the issues discussed in this chapter are, loosely
speaking, associated with specification, we limit ourselves to the specifi-
cation problems that analysts face when deciding which variables to
include and exclude in a regression equation and the functional form of
that equation. Unfortunately, omitting a relevant variable, even an
irrelevant variable, or using an improper functional form can produce
undesirable effects on the results.

OMITTING A RELEVANT VARIABLE

When a variable is omitted from a regression equation, the regression
coefficients on the included variables will, in general, be unreliable or
invalid, since they will be “biased” estimates of the true population
regression coefficients.’ While this conclusion stems from statistical
theory and is not proven here, the idea underlying this result is intu-
itively plausible. Suppose that two variables, income and family size, are
the sole determinants of food consumption and that all other variability
in food purchases across families is purely a random occurrence. If the
analyst uses only income to explain variability in food consumption and
if income and family size are correlated, the estimated coefficient on
income will reflect the effects of both income and family size on food
purchases. This is why the addition of family size to the food consump-
tion equation altered the estimated effect of a change in income from
5.8¢ to 5.6¢.

Since the task of regression analysis is to estimate the response in the
dependent variable to changes in an independent variable, an incorrect
estimate of that response may be serious. Unfortunately, there is little an
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analyst can do to detect whether an important variable has been left out
of the equation. Because of the uncertainty regarding omitted variables,
researchers often include results from two or more different specifica-
tions of the same phenomenon. If, under alternative specifications, there
is little change in the size of the estimated coefficients, the estimates are |
said to be robust. Such experimentation strengthens the analyst’s belief
in the model used; even then one can never be absolutely certain that a
relevant variable has not been omitted.

INCLUSION OF AN IRRELEVANT VARIABLE

One might think that, since omitting a relevant variable is “bad,” the
solution to the problem is to throw every available variable into the
equation. Of course, this solution also has pitfalls. If a variable is
included in the equation but is not in fact relevant, the estimates of the
coefficients will be unbiased. However, if the irrelevant variable is
correlated with the included relevant variables, the size of the estimated
standard errors of the coefficients of the relevant variables will increase.
This in turn means that the ratios will be smaller than if the correct
specification were used. Hence, the analyst is more likely to conclude
that the coefficient on a relevant variable is not significantly different
from zero, (i.e., the researcher will not be able to reject the null hypothe-
sis that there is no association with the dependent variable). Thus,
adding unnecessary variables causes a loss in precision of the estimated
coefficients on the relevant variables.

INCORRECT FUNCTIONAL FORM

In the previous section it was shown that least squares linear regres-
sion is not restricted to simple linear relationships among variables.
There are, in fact, myriad possible functional forms that are amenable to
estimation using least squares techniques. The issue is which form to
use.

If the underlying relationship between variables is actually nonlinear
but a linear function is estimated, the resulting coefficient will be biased.
Consider the previously mentioned case of the value of houses located at
different distances from the central business district. It is reasonable to
expect that the relationship would be nonlinear. If an analyst simply
estimated the linear function, Value = a + 8 Distance, the estimated
coefficient on distance might be very close to zero and would suggest a
flat value-distance relationship. Such an estimate of 8 would be a biased
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or misleading indicator of the functional relationship between value and
distance.

One way in which nonlinearities may be detected is to plot the
residual error (the difference between the actual value of the dependent
variable and its value as estimated from the equation). If there are large
negative (positive) residuals at low and high values of an independent
variable and large positive (negative) residuals at intermediate levels of
the independent variable, a nonlinear relationship is suggested.

STEPWISE REGRESSION

Since decisions regarding which of numerous possible variables to
include in a regression equation are difficult, stepwise regression tech-
niques are sometimes used. These techniques allow the computer to
experiment with different combinations of independent variables.

In one method of stepwise regression, the compuer first estimates
simple linear regressions using each of all the possible independent
variables specified by the analyst. For example, if there were 20 possible
independent variables, the computer program would estimate 20 differ-
ent simple linear regressions. From the set of 20 results the program
would choose which one is “best.” This selection, which is a part of the
computer program, usually relies on the coefficient of determination, R,

In step 2 the program would try each of the 19 remaining independent
variables together with the variable chosen in step 1 and produce 19
different regression results, each with two independent variables. Again,
the rule regarding which of these 19 is “best” would be invoked and
results from this second step would be printed. This process continues
until either all 20 variables are included in the equation or no remaining
variable increases the R’ statistic sufficiently to permit the inclusion of
additional variables.

Although R? statistics can be tested using an F distribution (see
equation 13 in Chapter 3), it should be recognized that changes in R?
attributable to any particular variable usually depend on what variables
are already in the equation. For example, when income alone is used in
the food consumption example, the R? is 0.307. If family size is the sole
regressor used to explain food spending, the R” is 0.170; adding income
as a second regressor increases the R to 0.456. This seccond approach
would suggest that income explains only an additional 29 percent (=
0.456 — 0.170) of the total variability in food consumption, rather than
31 percent as indicated above. Incremental changes in R? values should

a5




70

therefore be interpreted in terms of which other variables have already
been included in the model. Without careful thought, stepwise regres-
sion analysis can turn into a fishing expedition that is void of theory.

In summary, specification is one of the most perplexing problems
faced by most analysts. Misspecification can produce misleading or
imprecise results. Furthermore, computational techniques relying heav-
ily on computers and devoid of theory do not provide the solution. It is
still innovative thought and theory that must be relied on most to
surmount problems.

Proxy Variables and Measurement Error

While theorizing about appropriate variables is not always easy,
actually observing some variables and measuring them accurately can
be equally difficult. Appropriate data are often not available. In such
cases analysts often turn to alternative, second-best measures of the
phenomenon at hand. The variables chosen are termed proxy variables
since they are being used to approximate the real thing. The degree of
approximation will influence the estimated impact of the variable of
actual interest.

There are many examples of uses of proxy variables in the literature.
Whenever dummy variables are substituted for what is really a continu-
ous variable, a proxy is being used. For example, some analysts of
political behavior may theorize that the “liberalism” of the president
affects particular types of behavior, but, in the absence of a direct
measure of liberal tendencies, they use a dummy variable set equal to 1 if
the president is a Democrat and 0 if a Republican.

Attitudes are seldom easy to measure directly. For that reason,
numerous scaling variables have been developed which are constructed
from responses to attitudinal surveys. Examples of such scales are found
in DeMaris and Leslie’s (1984) study of cohabitation where the depen-
dent variable, level of marital satisfaction, was constructed from ques-
tions asked of the respondents.

Variables that are available are often substituted for unobserved
variables. For example, even though theory may suggest that work
experience influences wages, experience may not be available in a data
set. In such instances researchers often substitute age under the assump-
tion that the older the worker, the greater his or her work history. This
measure, or a derivative thereof (such as age less the years of education
less five), may be reasonably accurate for males with continuous labor
market experiences. It is, however, less accurate in cases where individ-




71

uals, especially women, have had discontinuous formal labor market
work histories.

Use of imperfect proxy variables can introduce errors of measure-
ment into the analysis. Another form of measurement error is simply
mismeasurement of the variables that are available. For example, re-
spondents to a survey may deliberately understate their age or not report
accurately the candidate for whom they voted. Measurement error can
also occur if survey questions are asked in an ambiguous way.

Measurement errors can result in biased estimates of regression
coefficients. Sometimes these errors can be avoided through more accu-
rate data collection procedures; however, when analysts use data col-
lected by others, it is unlikely that much can be done to improve the
quality of the numbers. Instead, cognizance should be taken of the
probable measurement errors and how systematic over- or underreport-
ing of either the independent or dependent variables might influence the
estimated coefficients.

Selection Bias

There are instances in which, even though every variable is measured
accurately, the nature of the sample is such that the observations are for
a nonrepresentative sample of the population. All results based on
questionnaires that can be completed by anyone who is willing to put
forth the effort are potentially nonrepresentative, since the participants
have been self-selected. Similarly, when studying women’s wages,
_ women not in the labor force are systematically excluded from the
analysis. In such a case the results of the regression analysis cannot
readily be used to predict the wage that a woman currently not working
could get is she were to get a job. This is because there is likely some
systematic difference between women who are working in the labor
market and those who are not working for wages. Any regression based
only on the former group will not capture this influence. If the regression
results from the censored sample (working women) are to be used to
make inferences about all women, it is necessary to adjust for the
selection bias that exists.

Multicollinearity

A final problem associated with data used in a regression is multicol-
linearity. It arises whenever two or more independent variables used in a
regression are not independent but are correlated. Unfortunately, in the
social sciences this problem arises often, since many socioeconomic
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variables such as education, social status, political preference, income,
and wealth are likely to be interrelated. Time series data are also likely to
exhibit multicollinearity. Many economic series tend to move in the
same direction (e.g., production, income, and employment data).

When two or more independent variables are correlated, the statisti-
cal estimation techniques discussed earlier are incapable of sorting out
the independent effects of each on the dependent variable. For example,
New York State imposed a mandatory seat belt law at about the same
time that law enforcement agencies in the state cracked down on drunk-
en drivers. For this reason, any subsequent decline in auto fatalities
cannot be attributed exclusively to either one or the other of these policy
decisions.

While regression coefficients estimated using correlated independent
variables are unbiased, they tend to have larger standard errors than
they would have in the absence of multicollinearity. This in turn means
that the t ratios will be smaller. Thus it is more likely that one will find
the regression coefficients not to be significant than in the case where no
multicollinearity plagues the data. In essence, there is less precision
associated with estimated coefficients.

Multicollinearity is probably present in all regression analysis, since
the independent variables are unlikely to be totally uncorrelated. Thus
whether or not multicollinearity is a problem depends on the degree of
collinearity. The difficulty is that there is no statistical test that can
determine whether or not it really is a problem. One method to search
for the problem is to look for “high” correlation coefficients between the
variables included in a regression equation. Even then, however, this
approach is not foolproof, since multicollinearity also exists if linear
combinations of variables are used in a regression equation.*” There is
no single preferable technique for overcoming multicollinearity, since
the problem is due to the form of the data. If two variables are measuring
the same thing, however, one of the variables is often dropped, since
little information is lost by doing so.

Autocorrelation

Measurement errors, selection bias, and multicollinearity are all
attributable to the data available to a researcher. The next set of issues
pertains to assumptions regarding the residual error term.

Recall that the residual error term is the difference in the observed
value of the dependent variable for the ith observation, Y,, and the value
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of the dependent variable predicted from the estimated regression for
the ith observation, Y.. The discussion of regression analysis in Chap-
ters 1 and 2 is based on the ordinary least squares (OLS) regression
model. This model assumes that (1) even though some errors are small
and others are large, some are positive and others are negative, they have
a mean of zero; (2) the error term associated with one observation is
uncorrelated with the error term associated with all other observations;
(3) while some of the error terms may be smalil and others large, the
variability of the error terms is in no way related to the independent
variables used; and (4) the error term is not correlated with the indepen-
dent variables. Violations of any of these assumptions produce undesir-
able properties in the results obtained when regression coefficients are
estimated without regard for these assumptions. While a full discussion
of all these topics is beyond our purpose here, it is useful to review the
most common problems that arise in the course of regression analysis
and to indicate the steps that analysts take in response to these
problems.

The first of these issues is termed autocorrelation or serial correla-
tion. Autocorrelation refers to the case in which the residual errors
terms from different observations are correlated. If the terms are posi-
tively correlated, positive autocorrelation is said to exist, while if they
are negatively correlated, negative autocorrelation is present.

Autocorrelation and the problems it presents are more likely to
appear with time series data, and most commonly the problem is re-
stricted to error terms associated with successive time periods. To
illustrate a stylized example of positive autocorrelation, consider a
hypothetical time series regression analysis of total spending by a school
district, Ed, as a function of the personal income of residents in the
district. The data in Table 8 are constructed for 12 consecutive years,
with column 2 indicating the actual level of Ed in each year, Ed., and
column 3 showing the level of predicted Ed, Ed,, found from a regression
equation. Column 4 is the simple difference between columns 2 and 3,
Ed: - Ed.. The entries in column 5 are the values from 4 but lagged one
year. That is, the value in column 5 for year two is the same as in column
4 in year one, and so on through the entire set of data.

The residuals and their associated lagged values are plotted in Figure
11. One observes that the pattern of residuals is the same as would be
found for any two positively correlated variabies. Positive autocorrela-
tion thus means that there is positive correlation between successive
error terms. For negative autocorrelation, just the opposite holds; thus,
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TABLE 8
Error Terms in the Case of Positive Autocorrelation
(1) (2) (3) 4 (3)
Observed Value Predicted Value Residual Lagged Residual
N A A
Period Ed Edt Edt - Edt Edt—‘l — Edt—l
1 110 105 5 —
2 115 108 7 5
3 126 120 6 7
4 129 126 3 6
5 129 127 2 3
6 130 131 -1 2
7 133 136 -3 -1
8 137 142 -5 -3
9 149 150 -1 -5
10 155 155 0 -1
11 166 162 4 0 ‘
12 176 171 5 4

SOURCE: Hypothetical data.

Figure 11: Plot of Residuals and Lagged Residuals with Positive Autocorrelation
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if the error is positive in one observation, it is highly likely that it will be
negative in the adjacent observation.*

Autocorrelation can be caused by several factors, including omission
of an important explanatory variable or the use of an incorrect func-
tional form. It may also simply be due to the tendency of effects to
persist over time or for dependent variables to behave cyclically. What-
ever the cause, autocorrelation influences the outcome of the hypothe-
sis-testing procedure. The effect of positive autocorrelation is underesti-
mation of the standard error of the estimated coefficient, s5. This in turn
yields an inflated t ratio, which means that it is possible that coefficients
will be found to be significantly different from zero when in fact they are
not.

While simply looking at the residual terms may provide some clue to
the existence of autocorrelation, many authors report a test statistic
called the Durbin-Watson coefficient, especially when time series data
are being analyzed. This coefficient can be used to test the null hypothe-
sis that successive error terms are not autocorrelated.

When serially correlated error terms are detected, there are special
techniques available to circumvent the problem. Many analysts use a
technique called generalized least squares (GLS) regression to overcome
the problem. This method is based on ordinary least squares regression
techniques but uses variables that have been transformed.

Heteroskedasticity

= Heteroskedasticity refers to another nonrandom pattern in the resid-

ual error term. Assumption (3) in the discussion of the OLS regression
model is that the variability in the error term does not depend on any
factor included in the analysis. This assumption is known as the assump-
tion of homoskedastic errors; when it is violated, heteroskedasticity is
said to exist. The problem arises most frequently in the analysis of
cross-sectional data.

Consider the relationship between the number of employees in an
organization and the number of supervisors. One might specify that the
number of supervisors is a function of the number of employees. While a
general positive relationship will probably be found (i.e., organizations
with larger labor forces have greater numbers of supervisors), it may
also be the case that some large organizations have numerous supervi-
sors whereas other large organizations have relatively few. Such a
situation is sketched in Figure 12, where the variability in the residual
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Figure 12: Case of Heteroskedasticity
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error terms is not constant for all values of the independent variables.
The residuals are said to be heteroskedastic.

As with autocorrelation, heteroskedasticity affects the size of the
standard error of the regression coefficient, thereby biasing hypothesis-
test results. The effect on s, will depend on the exact manner in which the
heteroskedasticity was formed. Several different tests are available for
detecting the problem of heteroskedasticity. All depend on an examina-
tion of the residuals. Again, when the problem is detected, generalized
least squares can be used to give differential weights to the observations
and thereby circumvent its effects on tests of hypothesis.

Simultaneous Equations

As noted earlier, the linear regression model assumes that the resid-
uals are purely random variables. Contemporaneous correlation arises
when the residual and the independent variable(s) are correlated.** This
problem can arise for a variety of reasons, but it most commonly occurs
when simultaneous phenomena are under investigation.

Even though we warned that causality is never proven by regression
analysis, when a researcher specifies that Y = f(X), an implicit causal
linkage is assumed. In general, this functional relationship runs from X
to Y (i.e., the value of Y is dependent on the value of X). But in many
situations the dependency may run both ways (i.e., X is also a function
of Y).

One common example of a simultaneous process occurs in the area of
criminology. Those cities with higher crime rates are likely to put more
resources into crime fighting: Police = f(Crime). At the same time, if
police protection is effective, the crime rate should be decreased: Crime
= f(Police). In these instances, simple linear regression will yield biased
estimates of the phenomenon under investigation.

The solution to simultaneity is rather complex and well beyond the
scope of this book. It is worthwhile, however, to consider briefly two
primary issues that are commonly mentioned by analysts investigating
simultaneous phenomena: identification and estimation.

Although a variety of methods for estimating simultaneous relation-
ships are available, these techniques require that the coefficients of the
model be mathematically obtainable or identifiable. Consider the case
of the price and quantity of wheat sold each year. Economic theory
holds that market prices and quantities are determined by the simulta-
neous actions of suppliers and demanders. One could easily obtain data
on the total wheat marketed each year in the United States and the
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annual price of wheat for the last several decades. One might then
estimate the equation, Quantity = « + 8 Price. While one would obtain
estimates of the parameters, there is no way of knowing or identifying
whether the estimated relationship is the demand or the supply relation-
ship, since quantity and price are involved in both relationships.

In order for identification to be possible in such a case, the model
must be expanded in some manner. For example, one might argue that
quantity demanded (Qu) is a function of price (P), income (I), and the
U.S. population (Pop), while quantity supplied (Q,) is a function of price
and the cost of producing wheat. This would yield the following simulta-
neous equation model, in which the coefficients are identifiable:

Qp=a, +B,P+4,1+3,POP

Qg = a, +B,P+ B Cost

A variety of techniques are available to investigators when models are
identifiable. Most of the methods also yield associated statistics similar
to those discussed earlier so that hypothesis tests can also be performed.
One commonly used method is called two-stage least squares, a tech-
nique highly regarded because of its simplicity, ease of computation,
and fairly desirable statistical properties. Other estimation techniques
include three-stage least squares and maximum likelihood methods.
Advanced study of statistics is required, however, for an understanding
of these techniques. Nevertheless, the methods are applied in a variety of
circumstances, including estimation of multiple equation macroeco-
nomic models which are used to forecast the course of the economy.

EXAMPLE 1—-EXPENDITURES ON POLICE

It was noted earlier that criminal behavior and policies concerning
police protection can be considered as another example of a simultane-
ous model. This approach was taken in a recent study of determinants of
police expenditures in a cross-section of 79 cities with populations
greater than 100,000 (Bahl, Gustely, and Wasylenko, 1978). A three-
equation model was built. One equation specified that total police
spending depends on, among other factors, the level of employment in
the local police department. A second equation specified that police
employment depends on several variables, including the crime rate in
the city. Finally, a “crime” equation was specified which hypothesized
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that criminal activity depends on such socioeconomic factors as the
local unemployment rate, the average prison sentence served in the state
in which the city is located, as well as the level of police employment.

Two-stage least squares regression was used to estimate the model,
with all continuous variables expressed as logarithms. Because of this
functional form, the resulting coefficients are elasticity estimates (per-
centage change in the dependent variable relative to a percentage change
in the independent variable). The resulting elasticity of police employ-
ment with respect to the crime rate was 0.378, implying that cities with
higher crime rates employed greater numbers of police; the elasticity of
the crime rate with respect to police employment was found to be -0.231,
suggesting that cities with greater police employment had lower crime
rates.

Limited Dependent Variables

Analysts often wish to study behavior which is observed only as a
binary indicator. Examples include whether or not a person is in the
labor force, whether or not an applicant was admitted to a university, or
whether or not an otherwise qualified voter is registered to vote.

In Chapter 4 we reviewed the use of 0-1 dummy variables as indepen-
dent variables in regression analysis. While such dichotomous indica-
tors are appropriate as explanatory variables, ordinary least squares
regression analysis is not appropriate when a 0-1 or other limited choice
variable is the dependent variable.

Several problems arise in the case of a 0-1 dependent variable which
make the ordinary least squares regression inappropriate. Consider the
simple case of a model which specifies that higher income persons have a
greater probability to be registered as Republican voters. The dependent
variable, R, in the model would then be equal to 1 if the person were a
Republican and 0 if not. One might estimate the equation, R = & + 81,
using least squares regression analysis. (You might sketch a two-dimen-
sional graph showing I on the horizontal axis and the 0-1 variable R on
the vertical axis.)

While the techniques of Chapter 1 would yield estimates of « and 8,
several problems can arise. First, it is possible that for certain values of 1
(together with the estimated a and b) the predicted value of R would be
either less than zero or greater than one. But since R can be interpreted
as the probability of being a Republican, such values do not make sense.
Second, the variability of residuals obtained from such an estimation




80

will depend on the size of the independent variable, suggesting that
heteroskedasticity is a problem here. Finally, while we have not stressed
it, the theory that underlies the hypothesis-testing procedure is based on
the assumption of normally distributed residuals, which is certainly not
the case in this instance.

While ordinary least squares regression is inappropriate in such
instances, nonlinear estimation techniques have been developed to over-
come the major statistical difficulties outlined earlier. Two techniques
are most commonly used in such instances. One is called probit analysis,
while the second is termed logit analysis. The primary theoretical differ-
ence between the two concerns the probability distributions that under-
lie the process being analyzed. Nevertheless, each is capable (after some
manipulation of the results) of providing estimates of the effect of unit
changes in the independent variable(s) on the probability of an event.*’

For completeness, we should also mention that recent developments
in econometrics have extended the special models to allow for analysis
of situations in which there are a small number of mutually exclusive
outcomes in a choice process (e.g., choice of college). In addition, some
analysts have used another special technique, termed Tobit analysis,
when faced with a situation in which many participants in a choice
process choose a zero outcome while others choose some positive num-
ber that is unlimited in size. An example of such a case is the amount of
money a family spends on new car purchases in one year. Many families
buy no new car at all (Y = 0), while others make purchases anywhere in
the range from, say, $5,000 to $35,000.

Conclusions

Linear regression provides a powerful method for analyzing a wide
variety of behavioral situations. At the same time, this technique relies
on a set of assumptions that may or may not hold in different applica-
tions. As this technique becomes more widely known, and as computa-
tional facilities become more accessible through the use of computers,
we anticipate that the use of linear regression analysis will become even
more widespread. A few hours spent perusing journals within a particu-
lar social science discipline will reveal that the use of this statistical
technique has increased greatly over time. While the problems of fore-
casting the future based on the past have already been discussed, our
own a priori expectations are that regression’s importance as an analyti-
cal technique will increase in the foreseeable future.




APPENDIX A:
DERIVATION OF a AND b

The purpose of this appendix is to show how to obtain the values of a and b
that minimize the sum of squared error term SSE. From Chapter 1, the sum of
the squared errors is given by

SSE = 3(C, - a - b’ [A]]

where 3, implies summation fromi= 1 to N. The values of a and b that minimize
equation Al are found by taking the partial derivative of SSE with respectto a
and b and setting the resulting derivatives equal to zero. This yields

dSSE/da = (-2)5(C.-a-bL)=0 [A2]
JSSE/db = (-2)X[(L)(C. - a - bL)]=0 [A3]

Dividing through both A2 and A3 by -2 and rearranging term yields

SC = aN + b3, [A4]
S(CL) = aSL, + b3(I}) [A5)

Equations A4 and AS are in the standard form of the normal equations for a
straight line. The terms %C,, 21, 3(1,C,), and 3(12) can be computed from the
data set. Equations A4 and AS can then be solved simultaneously for a and b.
The resulting values of a and b minimize SSE.

Equations A4 and A5 can also be solved to obtain formulas for the values of a
and b. The formula for b is

b= 3L -INC.-C)/ (-1 [A6]

where C and I represent the means of C and I, respectively.
Once b is known, a can be obtained by using the expression

C=a+bl [AT]

which is obtained by dividing equation A4 by N. The derivation of equation A6
is tedious but not difficuit and is presented in most statistics books. Notice that
equation A7 says that the regression line passes through the point defined by the
mean values of C and 1.

Equations A4 and A5 can be used to obtain estimates of a and b for the food
consumption problem. From the data in Table 1, the following values can be
obtained:

81




31, = 969,984

3C. =92,122.45

3(17) = 20,813,307,472
3(CL) = 1,903,186,495.00
N =50

Substituting these values into equations A4 and AS yields

92,122.45 = a(50) + b(969,984) [A4']
1,903,186,495.00 = 969,984 + b(20,813,307,472) [AS57]

These two equations are then solved simultaneously to yield a=714.58 and b =
0.058.

APPENDIX B:
CRITICAL VALUES FOR STUDENT’S ¢ DISTRIBUTION
Level of Significance (percentage) Values for Right-Tail Test®

Degrees of
Freedom 10% 5% 2.5% 1% 5%
1 3.0777 6.3138 12.7062 31.8207 63.6574
2 1.8856 2.9200 4.3027 6.9646 9.9248
3 1.6377 2.3534 3.1824 4.5407 5.8409
4 1.5332 2.1318 2.7764 3.7469 4.6041
5 1.4759 2.0150 2.5706 3.3649 4.0322
6 1.4398 1.9432 2.4469 3.1427 3.7074
7 1.4149 1.8946 2.3646 2.9980 3.4995
8 1.3968 1.8595 2.3060 2.8965 3.3554
9 1.3830 1.8331 2.2622 2.8214 3.2498
10 1.3722 1.8125 2.2281 2.7638 3.1693
11 1.3634 1.7959 2.2010 2.7181 3.1058
12 1.3562 1.7823 2.1788 2.6810 3.0545
13 1.3502 1.7709 2.1604 2.6503 3.0123
14 1.3450 1.7613 2.1448 2.6245 2.9768
15 1.3406 1.7531 2.1315 2.6025 2.9467
16 1.3368 1.7459 2.1199 2.5835 2.9208
17 1.3334 1.7396 2.1098 2.5669 2.8982
18 1.3304 1.7341 2.1009 2.5524 2.8784
19 1.3277 1.7291 2.0930 2.5395 2.8609
20 1.3253 1.7247 2.0860 2.5280 2.8453

21 1.3232 1.7207 2.0796 25177 2.8314
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Degrees of
Freedom 10% 5% 2.5% 1% 5%
22 1.3212 1.7171 2.0739 2.5083 2.8188
23 1.3195 1.7139 2.0687 2.4999 2.8073
24 1.3178 1.7109 2.0639 2.4922 2.7969
25 1.3163 1.7081 2.0595 2.4851 2.7874
26 1.3150 1.7056 2.0555 2.4786 2.7787
27 1.3137 1.7033 2.0518 2.4727 2.1707
28 1.3125 1.7011 2.0484 2.4671 2.7633
29 1.3114 1.6991 2.0452 2.4620 2.7564
30 1.3104 1.6973 2.0423 2.4573 2.7500
31 1.3095 1.6955 2.0395 2.4528 2.7440
32 1.3086 1.6939 2.0369 2.4487 2.7385
33 1.3077 1.6924 2.0345 2.4448 2.7333
34 1.3070 1.6909 2.0322 2.4411 2.7284
35 1.3062 1.6896 2.0301 2.4377 2.7238
36 1.3055 1.6883 2.0281 2.4345 2.7195
37 1.3049 1.6871 2.0262 24314 2.7154
38 1.3042 1.6860 2.0244 2.4286 2.7116
39 1.3036 1.6849 2.0227 2.4258 2.7079
40 1.3031 1.6839 2.0211 2.4233 2.7045
4] 1.3025 1.6829 2.0195 2.4208 2.7012
42 1.3020 1.6820 2.0181 2.4185 2.6981
43 1.3016 1.6811 2.0167 2.4163 2.6951
44 1.3011 1.6802 2.0154 2.4141 2.6923
45 1.3006 1.6794 2.0141 2.4121 2.6896
46 1.3002 1.6787 2.0129 2.4102 2.6870
47 1.2998 1.6779 2.0117 2.4083 2.6846
48 1.2994 1.6772 2.0106 2.4066 2.6822
49 1.2991 1.6766 2.0096 2.4049 2.6800
50 1.2987 1.6759 2.0086 2.4033 2.6778
60 1.2958 1.6706 2.0003 2.3%501 2.6603
70 1.2938 1.6669 1.9944 2.3808 2.6479
80 1.2922 1.6641 1.9901 2.3739 2.6387
90 12910 1.6620 1.9867 2.3685 2.6316
R 1.2816 1.6449 1.9600 2.3263 2.5758

SOURCE: Owen (1962, courtesy Atomic Energy Commission, Washington, DC).

a. For a left-tail test the appropriate t statistic will be negative. Thus, for 10 degrees
of freedom and at the 1 percent level of significance, the t statistic is —2.7638. For
a two-tail test the level of significance must be doubled. This implies, for example,
that with 50 degrees of freedom the t statistic of 1.6759 is associated with a signifi-

cance level of 10 percent, not § percent.

APPENDIX C:

REGRESSION OUTPUT FROM SAS AND SPSS

Two regression programs currently in use in most universities and research
centers are part of the SAS (Statistical Analysis System) and SPSS (Statistical
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Package for the Social Sciences) statistical packages. These packages consist of
different computerized routines. The purpose of this appendix is to indicate
where on SPSS or SAS computer output one finds the sorts of statistics that are
discussed in the text. It should be noted that other regression programs, includ-
ing those preprogrammed for microcomputers, provide many of the same kinds
of information as that shown here.

To facilitate the discussion, the information of most interest to us here has
been circled on the output and coded with an uppercase letter. In what follows
we note the meaning of each. To facilitate the discussion, the food consumption
data from Table 1 were used to generate these results based on the specification
of equation 5. Slightly different types of information are provided by the two
programs and, due to rounding, the results may differ slightly.

DEP VARIABLE: C

SAS
SUM CF MEAN

SCURCE DF SQUARES SQUARE F VALUE PROA>F
MODEL 2 17025264 5012632 19 662-G 00001-H
ERRDR 47 11931936 254625
C VCTAL a9 22017200

RCAT MSE 504.911 R=SQU ARE 04555-1

DEP MEAN 13424445 ADJ R-SQ 04324-J

CeVe 27.40432

PARAMETER STANDARD T FOR HOZ

VARIABLE CF ESTIMATE ERROR PARAMETER=( PROB > Ifl
INTERCEP 1 330 767-A 2540 209 1.3C1 r.1995
1 1 C.N50141 CL,011215 42561 £a0N01
s 1 12’4.622>B 36.1a3&ee>0 z.sne>D1 c.oooq>E
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Code Meaning

A The estimate of the intercept coefficient, a.

B The estimate of the regression coefficients on each of the independent
variables used in the regression, such as b; and b,. (Note that SPSS uses a
“scientific notation.” The “D-01 at the end of the coefficient on the I
variable means that one should move the decimal point one place to the
left. That is, the estimate is 0.05614086.)

C The estimates of the standard errors of the regression coefficients, so.
(SPSS does not provide this information for the intercept, or constant,
coefficient.)

D Due to programming differences, SPSS provides different, but equiva-
lent, information regarding the statistical significance of the regression
coefficients.

DI[SAS)

SAS provides the user with the value of the t ratio computed under the
null hypothesis that the population regression coefficient is equal to zero
(H.:B=0).

D2 [SPSS]

The entries under the heading of the column marked “F”, for F ratio, in
the SPSS output are exactly the same as those under the heading of “T
FOR HO”in SAS except for the fact that those in SPSS are the squares of
those in SAS. (To see this, multiply the SAS entries times themselves—
e.g.,4.961 X4.961 =24.616.) The SPSS program is based on the fact that
an F distribution with 1 numerator degree of freedom and d degrees of
freedom in the denominator is equal to the square of a t distribution with
d degrees of freedom.

E Available in SAS (but not SPSS) is the level of significance at which one
can reject the null hypothesis that the regression coefficient is equal to
zero. It is important to note that a two-tailed test is assumed here.

F The standardized regression coefficient, or beta coefficient, discussed in
Chapter 2. SPSS always provides this information; it is also available in
SAS, but only as a special option.

G The F ratio used to test the null hypothesis Ho: 81 = 8, = 0. The appropriate
degrees of freedom to be used to test this null hypothesis can be found to
the left of this ratio on each output under the heading DF.

H Again, SAS provides the user with the lowest level of significance at which
the null hypothesis can be rejected. As shown here, one can reject the null
at the 0.0001 level.

I The estimated coefficient of determination, R*.

J R’ the coefficient of determination adjusted for degrees of freedom.
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APPENDIX D:
SUGGESTED TEXTBOOKS

There is a long list of textbooks available which focus to some extent on
linear regression analysis. Most introductory statistics texts contain at least one
chapter devoted to the subject, while econometrics textbooks tend to focus
nearly exclusively on linear regression. Among the potential books in these areas
are the following:

Introductory Statistics

Hamburg, M. (1985) Basic Statistics: A Modern Approach (3rd ed.). San Diego,
CA: Harcourt Brace Jovanovich.

Koopmans, L. H. (1981) An Introduction to Contemporary Statistics. Boston:
Duxbury Press.

Wonnacott, T. and R. J. Wonnacott (1984) Introductory Statistics of Business
and Economics (3rd ed.). New York: John Wiley.

There are also introductory textbooks for statistics designed for specific
disciplines such as political science, sociology, or education:

Regression-Oriented Texts

Draper, N. R. and H. Smith (1981) Applied Regression Analysis (2nd ed.). New
York: John Wiley.

Kleinbaum, D. G. and L. L. Kupper (1978) Applied Regression Analysis:
Another Multivariable Method. North Scituate, MA: Duxbury Press.
Younger, M. S. (1979) A Handbook for Linear Regression. North Scituate,
MA: Duxbury Press.

In addition, many of the books in this Sage series, Quantitative Applications
in the Social Sciences, focus exclusively on linear regression.

Econometrics

Johnston, J. (1984) Econometric Methods (3rd ed.). New York: McGraw-Hill.
Maddala, G. S. (1977) Econometrics. New York: McGraw-Hill.

Pindyck, R. S. and D. L. Rubinfeld (1981) Econometric Models and Economic
Forecasts (2nd ed.). New York: McGraw-Hill.




NOTES

1. Hypotheses need not be functional relationships, since it can be hypothesized that
Mary is taller than Jane without implying causation. However, the hypotheses that we
discuss are statements of functional relationships.

2. Economic theory states that the consumption of a product is a function of income,
the price of the product, the prices of related products, and the tastes of the consumer.
When everything except income is held constant, changes in the consumption of the
product become a function of changes in income alone.

3. Inits use in statistics, population refers to a collection of data, not necessarily to
people. If we were interested in the advertising expenditures of firms, we would draw a
sample from the population consisting of all firms.

4. There are many different functional forms for an equation relating two variables.
For example, the two equations Y = a+ bX and Y = a(X)" represent, respectively, the linear
and hyperbolic forms. The Xs and Ys represent variables—that is, symbols that take on
any value within some specified set of values. The a’s and b’ represent parameters—that
is, symbols that take on only one value in each equation.

5. Note that problems may arise when one specifies a functional form when a
different form should have been specified, meaning that care must be taken in selecting the
particular form used. Further, linearity may imply more than just a straight line. These
topics are discussed in Chapters 4 and 5.

6. When I equals zero, the value of C equals «. In a graph, « is the intercept on the
ordinate axis—that is, the axis on which the dependent variable is measured, usually the
vertical axis. The slope of the line is B, and it describes how C changes with each unit
change in 1. The slope of a line or equation is defined as the change in the dependent
variable divided by the change in the independent variable. In Figure 2, the three lines
illustrate three different general values for the slope. For line 1 the slope is positive,
meaning that increases (decreases) in I are associated with increases (decreases) in C; for
line 2 the slope is zero, meaning that C does not change when I changes; and for line 3 the
slope is negative, meaning that the increases (decreases) in I are associated with decreases
(increases) in C. In each case the value of « is 10.

7. 1f we used the regression equation and calculated the value of consumption for
income equal to I, the estimated level of consumption would be denoted by C.. The symbol
3. (the Greek letter sigma) is the standard symbol for summation. For example,

3
> G
i=1

means to sum the first three values of C (from Table 1); that is,
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1C" =$723.52+ $780.70 + $990.74 = $2,494.96.
i= :

8. To see this, consider a sample with three observations:

C

WO =

1
2
3

Plot the three observations and draw a line through all three points. Now draw a different
straight line which passes through the second observation but not the first and third. For
both lines, the sum of the nonsquared distances is zero.

9. This statement anticipates the discussion of hypothesis testing in Chapter 3. As
will be seen there, the last statement depends on more than the sign of the estimated
parameter.

10. The observations are monthly values for the rate of return and the rate of inflation
for the period January 1953 through December 1971.

11. There are several different measures of correlation, depending on the nature of the
variables. An explanation of the necessary conditions for calculating the correlation
coefficient discussed here is beyond the scope of the book.

12. The correlation coefficient in this case is, of course, affected greatly by the fact that
the Dolphins and the Seahawks had a good year while the Jets, Colts, and Bills did not.
For the National Football Conference, the equivalent correlation coefficient is .328.

13. The relationship between the regression coefficient and the correlation coefficient
can be shown to be b =1r(s,/sx), where s, is the standard deviation of the dependent variable
and s, is the standard deviation of the independent variable. Standard deviation is a
measure of the dispersion, about the mean, of the distribution of some variable. The
further the values of a variable are spread out from the mean, the greater the value of the
standard deviation. The formula for the standard deviation is

JEE =D @-1

where n is the number of observations.

14. The reader can verify this proposition in the following way: The estimated value of
Cfor a family of four with a $10,000 income is $1,409.25; for a family of five with a $10,000
income, C is estimated to be $1,538.87. This is a change in C of $129.62 = $1,538.87 -
$1,409.25 associated with a one-unit change in S while holding income constant.

15. See note 13 for the formula for the standard deviation.

16. Specifically,

. (N-DR* -k
N-k-1

where N is the number of observations and k is the number of independent variables in the
regression equation.
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17. Hypothesis testing is relevant whenever there is a random component to the
estimate. Although our discussion focuses on sampling as the source of this randomness,
other sources for randomness exist.

18. All hypotheses investigated in this study are stated with respect to the slope
parameter (8 for the food consumption problem), since most research focuses on changes
in the dependent variable associated with changes in the independent variable. The
analysis, however, applies equally to the intercept parameter (« in the food expenditure
problem.)

19. The hypothesis-testing procedure can be used for testing coefficients obtained
from a multiple regression equation. We are using the simple regression coefficient only to
expedite the discussion.

20. It can be shown that by minimizing this type of error, the court system makes it
more likely that defendants who actually did commit a crime will be set free.

21. Inthe hypothesis-testing procedure, the analyst sets the probability of making the
inferential error of rejecting the null hypothesis when it is true. The procedure, however,
does not consider the possibility that the null hypothesis will not be rejected even though it
is not true.

22. The standard error is equal to

1 A2
5 -Gy
V-1

23. A probability distribution relates the probability associated with a given event.
Following is an example of the probability distribution of T, the event defined as the
number of tails thrown out of four tosses of a fair coin:

T Probability of T
T=0 1/16
T=1 4/16
T=2 6/16
T=3 4/16
T=4 1/16

24. While the underlying mathematics of the t distribution are far more complex than *
we wish to develop here, a picture of what the t distribution looks like may be useful. The
distribution sketched in Figure 8 is bell-shaped and centered at zero. The construction of
the distribution is such that the total area under the curve is equal to 1. Hence, any portion
of the area under the curve can be thought of as some proportion of 1. The exact shape of
the t distribution depends on the degrees of freedom. For each possible t distribution,
statisticians have computed the proportion of the area under the curve lying on either side
of any value of t, denoted t,. For example, as shown later, if t; is equal to 1.677, then 5
percent of the area under the curve will lie to the right of t, and 95 percent of the area will lie
to the left of 1.677 (when there are 48 degrees of freedom). It is particularly convenient that
probabilities are always stated as positive fractions in the range from zero to one. Hence,
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one can say that the probability is 0.05 that a variable distributed as a t distribution will be
greater than 1.677 and 0.95 that the variable will be less than 1.677.

25. The expression > is read “greater than.”

26. Strictly speaking, from any one sample and its estimate, these methods can be used
legitimately only to test one hypothesis about the value of a coefficient. The examples
presented here are for expository purposes only.

27. The role of degrees of freedom is encompassed in the t distribution. Without
mathematical proof, as the degrees of freedom decline, the shape of the t distribution
becomes less fat. But this in turn means that in order to leave only 5 percent of the area
under the curve but to the right of the t statistic, a higher value of the t statistic must be
utilized than when there are more degrees of freedom. For example, with only 20 degrees
of freedom, a t statistic of 1.725 must be used instead of 1.677 to allow 5 percent of the area
under the curve to lie to the right of t.

28. Note that if one wants to have a smaller probability associated with the shaded
area under the curve, alarger value for the t statistic would have to be used. For example, if
one wanted only a 2.5 percent probability of making an inferential error, the t distribution
(as shown in Appendix B) would imply that a t statistic of 2.011 would have to be used.
This in turn would yield a larger test value and would make it more difficult to reject the
null hypothesis.

29. Figure 8 shows that the t distribution is symmetric. This means, for example,
that 5 percent of the area under the curve will be to the right of 1.677 and 5 percent of the
area under the curve will be to the left of -1.677.

30. Sometimes t ratios for left-tailed tests are presented as absolute values. If this is
done, the ratio is always positive and should be compared to an appropriate positive-
valued t statistic. In this instance the null hypothesis is rejected if {b/ss| > t..

31. Theexpression |b - | is to be read as the absolute value of the difference between
b and B. In absolute value terms, {8 - b| is equivalent to [b - 8].

32. They are highly correlated because family size is normally equal to the number of
children plus one or two adults.

33. For a discussion of the limitations of tests of significance, see McCloskey (1985).

34. The distinction between aggregate and micro data is somewhat artificial. For
example, families consisting of more than one member can be considered aggregate units,
and a firm’s sales are probably due to the combined efforts of several persons. Neverthe-
less, it is important when observing regression results to recognize the degree of
aggregation implied by the data.

35. Note that there would be no change in the implications of the results had the
dummy variable K been defined to equal 1 for nonfarm families and 0 for farmers, The
estimated equation would have been C = 143.68 + 0.0601 + 599.16K. That is, the estimated
response to the one-dollar increase in income would still be 0.060, and nonfarm families
(where K = +1) would still be shown to consume $599.16 more than farm families with
equal income.

36. The reader should note that any continuous variable can be transformed into a
classification variable. For example, while age is a continuous variable, surveys often
report ages according to groups (e.g., less than 20 years of age, 20-65, or older than 65).
The present discussion applies in those instances as well.

37. If, for example, o’ = 1 and B = 2, the resulting equation would be L = M’. The
reader should experiment with different values of M to verify that L and M are related
nonlinearly.
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38. Equation 15 relies on the following characteristics of mathematical operations on
logarithms: log (XY)=log (X) +log(Y), and log (X°) = clog (X) where X and Y are any two
positive real numbers and C is a real number. The symbol In denotes the special case of a
logarithm to the base e.

39. Students of economics will recognize that the ratio of the percentage change in L
relative to a percentage change in M is the definition of the elasticity of L with respect to
M. Thus this transformation provides a convenient way to estimate elasticity coefficients.
Note too that in this case the assumption is made that the elasticity is the same at all points
along the relationship.

40. From the calculus we know that dY/dX = B8 + 28.X; that is, the change in Y
associated with a change in X depends on 8, B, and X.

41. Bias is a statistical property and refers to whether or not, in numerous samples
from a population, the estimates of the parameters will, on average, be equal to the
population parameter. An unbiased estimator will, on average, yield estimates equal to
that parameter.

42. Without proof, this is the reason that, when dummy variables representing three or
more classes of outcomes are being analyzed, one group is omitted from the analysis.
Without such omission, the results would be plagued with perfect multicollinearity.

43, Other patterns are also possible (e.g., correlations between residuals lagged two
periods).

44, Note that in the case of heteroskedasticity, it is the variability of the residuals that
is related to the independent variables; here it is the residuals themselves.

45. In fact, some studies have shown that there is not a great deal of difference in the
results between these techniques and the results obtained from the ordinary least squares
models. On the other hand, the latter models cannot directly yield predictions that will
necessarily conform to the laws of probability and still face the issues discussed earlier.
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