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SERIES EDITOR’S INTRODUCTION

Upon first hearing the phrase dummy variables, beginuing students of
quantitative research methods often chuckle. However, they quickly
learn the importance of dummy variables. Independent variables origi-
naily measured at the ordinal and nominal levels can make poor candi-
dates for inclusion in a regression analysis. However, once they are
“dummied up,” ordinary least squares estimation goes forward without
violating the level of measurement assumption.

What exactly is a dummy variable? Basically, it is a dichotomous
variable constructed from an originally qualitative variable. The num-
ber of dichotomies one needs equals G — 1, where G is the number of
original categories. For example, to represent the ordinal variable of
citizens’ political interest as measured in an opinion survey (three
categories—very, somewhat, not at all), the researcher must construct
two dichotomous variables. Say they are X (scored 1 if very, 0 if
otherwise) and X; (scored 1 if somewhat, 0 if otherwise). One observes
that those respondents who score 0 on both X and X, are necessarily
not at all interested. Also, these not at all interested form a baseline, or
reference, group from which to evaluate the regression coefficients of
X 1 and Xz.

But why select not ar all as the reference group rather than, say,
somewhat? To such a question, and the many others dummy variable
users face, Professor Hardy poses clear answers. Sticking with a well-
conceived example on income determination, she moves from the sim-
plest model-regression with one dummy variable (which reduces to a
difference of means test)—to complex models with multiple dummies,
quantitative variables, and interaction terms. Fortunately, the complex-
ity is clarified by careful verbal explication of the meanings of the
coefficients under the varying conditions.

After laying this firm foundation, Professor Hardy considers special
problems of dummy variable regression. Among other things, she ex-
plains how to deal with heteroscedasticity, how to interpret coefficients
when the dependent variable is logged or logit, how to make multiple

v




vi

comparisons in significance testing, how to carry out effects coding and
contrast coding, how to test for curvilinearity, and how to conduct a
piecewise linear regression.

In sum, Professor Hardy probes dummy variable usage from virtually
every possible angle. No other writer on statistical methods offers
anywhere near the coverage provided here. This accessibly written
monograph, it seems safe to say, will be the definitive treatment of
dummy variable regression for some time to come.

—Michael S. Lewis-Beck
Series Editor




REGRESSION WITH
DUMMY VARIABLES

MELISSA A. HARDY
Florida State University

1. INTRODUCTION

Regression analysis is one of the most flexible and widely used tech-
niques of quantitative analysis. A typical regression model attempts to
explain variation in a quantitative dependent variable, Y;, by mapping
the relationship of ¥ to a specified set of independent variables as an ¢
additive, linear function. Using least squares estimation techniques, we
arrive at a prediction equation that allows us to estimate conditional
means on the dependent variable—expected values of Y for specific
combinations of values on the independent variables. When the inde-
pendent variables are measurable as quantitative variables for which we
can assume roughly equal intervals relative o an arbitrary zero point,
the number of possible predicted values for Y is unlimited. Further,
when both dependent and independent variables are quantitative vari-
ables, the set of relationships can be captured geometrically.

In a bivariate regression in which we predict ¥ as a function of only
one independent variable, the relationship between the two variables is
captured by the regression line. All points along the line represent
conditional mean values of Y. When a second independent variable is
included in the specification, the one-dimensional line is extended to
two dimensions, and we have a plane with a particular tilt in the
north-south direction and a particular tilt in the east-west direction. All
points on this plane also represent predicted mean values of Y for
specific combinations of values on the two independent variables, As
the number of independent variables increases, the principles remain
the same even though the geometry may no longer be easily visualized.

But the usefulness of the regression model would be severely limited
if all independent variables used as predictors had to be measured on
an interval scale. Research questions involving group differences are
quite common. For example, social scientists are often interested in
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explaining racial/ethnic differences, gender differences, or regional
differences in behavior, attitudes, or socioeconomic characteristics.
Market researchers want to understand the demographics of consumer
preferences. In addition, researchers frequently want to know whether
the effects of independent variables are the same for all groups, or
whether group differences in the strength or direction of a relationship
also exist. Many research questions therefore seek to identify group
differences in levels of a dependent variable as well as group differ-
ences in the effects of independent variables.

When independent variables of interest are qualitative (i.e., “mea-
sured” at only the nominal level), we require a technique that allows us
to represent this information in quantitative terms without imposing
unrealistic measurement assumptions on the categorical variables. For
example, if occupational categories are coded from 1 through 12 (the
categorization used in single-digit census codes), it is not reasonable
simply to include occupation as a variable that ranges from a low value
of 1 to a high value of 12, because this treatment assumes an underlying
measurement scale of equal intervals, Defining a set of dummy vari-
ables allows us to capture the information contained in a categorization
scheme and then to use this information in a standard regression esti-
mation. In fact, the set of independent variables specified in a regression
equation can include any combination of qualitative and quantitative
predictors.

For example, the societal distribution of resources through earnings
is a concern that is common to both academics interested in inequality
and citizens trying to maintain their standard of living, Our beliefs
about social justice are often based on perceptions of resource distribu-
tion and whether certain groups seem to be advantaged or disadvan-
taged in the distributive process. A common approach to studying
discrimination in the distribution of earned income, for exampie, is to
begin by identifying a group difference—a difference between women
and men, or between blacks and whites—as the gross effect of being in
the less privileged rather than the more privileged group, and then to
investigate whether this gross difference is maintained after additional
determinants of resource distribution are included in the specification.
By using this technique, researchers try to identify the social process
that has produced the observed inequality.

In order to provide continuity in the discussion of statistical tech-
nique, 1 will frequently invoke the substantive example of predicting
earned income as a function of individual characteristics that can be
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captured by both qualitative and quantitative variables. Data are from
the first wave of the National Longitudinal Surveys of Clder Men. The
respondents in the original sample are representative of approximately
5 million men in the U 8. civilian noninstitutionalized population who
were ages 45 to 59 in 1966, the date of the first interview.! The
independent variables of interest to us in this example will include race,
occupation (U.S. Census classification), education (years of schooling),
and job tenure (years with the same employer). Although other variables
can be hypothesized as predictors of yearly income from wages and
salary (e.g., labor supply, job skills, health), I will limit this exercise to
just four predictors that provide us with a combination of quantitative
and qualitative measures, By explicating the technique of regression
with dammy variables through a discussion of progressively compiex
models predicting a single dependent variable, I will attempt to show
clearly how the interpretation of the coefficient for any particular ,
dummy variable is contingent on the overall specification of the model.
1 hope thereby to reduce the likelihood that readers will attempt to
generalize interpretations to situations in which they are no longer
appropriate.

The discussion will begin somewhat naively, with initial concern
focused on differences in earnings income (measured in dollars per
year) between blacks and whites. Then we will gradually build models
that call into question a number of assumptions embedded in the earlier
specifications. We will examine whether the group difference between
average earnings for blacks and whites persists when we control for
additional qualitative and quantitative independent variables. Then we
will test whether the net effects of the independent variables are the
same for blacks and whites. Ultimately, we will use the dummy variable
regression format to estimate race-specific effects for ail parameters in
the regression model. This gradual process of unfolding increasingly
complex specifications will take us through Chapter 4. Although the
distribution of earned income may not be of equal interest to all readers,
the types of measures used are straightforward and accessible to readers
regardless of disciplinary background. Further, the types of interpreta-
tions appropriate to different model specifications are easily extended
to any substantive issue. Chapter S provides a fairly brief description
of alternative coding strategies for dummy variables. In Chapter 6, we
move away from our single-problem focus to consider other types of
research situations in which dummy variables can be useful.



A Review of Multiple Regression

The discussion that follows assumes that the reader is already famil-
iar with single-equation regression models, the concept and technique
of partialing, and hypothesis testing. Readers who are not comfortable
with this material should trn first to introductory texts on regression.
Earlier volumes in this series (e.g., Berry & Feldman, 1985; Lewis-
Beck, 1980; Schroeder, Sjoquist, & Stephan, 1986), as well as basic
statistics texts (e.g., Bohrnstedt & Knoke, 1982; Cohen & Cohen,
1983), provide useful discussions of these topics.

By way of establishing the notation that will be used in this text,
however, we can review a few of the basics. Assume we have a quanti-
tative dependent variable (¥;), which we express as a linear function of
three quantitative independent variables, Xy;, Xa;, and Xs;. The popula-
tion regression function is

Y= By + BiX,; + B Xy + By Xy +u; = By + zﬁkxki + i, (1.1]

where k refers to the kth independent variable and i refers to the ith
observation. This equation expresses Y; as a linear additive function of
the independent variables Xy, X2, Xai and the stochastic error term, u;;
fo is the intercept term (the value of ¥; when all independent variables
are set to zero); B; is the population partial regression coefficient
indicating the increment or decrement in the expected value of Y;
associated with a unit change in Xy, controlling for the other indepen-
dent variables in the equation; f; and P; are the comparable coefficients
for X»; and X3, respectively. The population regression function thereby
provides the conditional means or expected values of Y; for fixed values
of Xy We rely on the sample regression function

Y, =By + B, X, + B,Xy + B3 Xy, + ¢ [1.2]

to produce least squares estimates of the population parameters. Each
of the regression coefficients—aBq, B\, B2, and B3—is a point estimator
of the corresponding population parameter noted in Equation 1.1; it is
also one observed value from the sampling distribution of the statistic.
We use the observed values of ef to estimate the population variances
and standard deviations of the sampling distributions {standard errors}
of Bg, B), B2, and B so that we may evaluate the statistical significance




of our estimates and draw some conclusions about relationships be-
tween ¥ and X; in the population. The standard error may also be used
to construct an interval estimator, called the confidence interval, which
is also useful in evaluating the strength or weakness of the statistical
evidence pertaining to hypotheses. Applying ordinary least squares
(OL1.5) analysis to these sample data is appropriate when we can accept
as reasonable the following assumptions:

1. E(ustXy) = 0, that is, the mean value of u;, conditional on given values of
Xz, is zero.

2. cov(u;, u;} = 0; that is, the disturbances are independent for all i # j.

3. var(u) = 02; that is, the variance of u; for each Xj value is equal to some
positive constant, 02; this is also known as the assumption of homoscedas-
ticity.

4. cov{u;, Xi) = 0, the disturbances and explanatory variables are indepen-
dently distributed.

Under these assumptions, OLS estimators are the best linear unbiased
estimators-—"“best” because they have the smallest variance in the class
of all linear unbiased estimators.

The problem of heteroscedasticity is usually associated with cross-
sectional data (data that describe units of a population at a given point
in time), whereas the problem of autocorrelation is more common with
time-series data (data that describe an entity over a period of time).
Dummy variables can prove useful in both cross-sectional and time-
series research. We can use dummy variables in cross-sectional research
to estimate differences between groups and to evaluate whether group
membership moderates the effects of other explanatory variables. Sim-
ilarly, we can use dummy variables in time-series analysis to determine
whether one time period differs from a second time period and to test
for the stability of effects across time (Gujarati, 1970). Because dummy
variables are often used to define groups of observations in time-series
analysis as well as in cross-sectional analysis, the researcher must be
careful to address the issue of heteroscedasticity in both contexts. By
specifying dummy variables to capture group differences in cross-
sectional research, we acknowledge that information on potentially
heterogeneous groups has been pooled, or combined. If the error vari-
ances of these groups are significantly different—if we violate the assump-
tion of homoscedasticity—the significance tests for individual coefficients
become unreliable. A similar problem characterizes time-series models

.



where dummy variables are used to test the stability of coefficients
across two {or more) time periods. If the error variance differs signifi-
cantly across the periods, the condition of heteroscedasticity makes
inferential tests problematic (Maddala, 1992). Extensive discussions of
the assumptions, the consequences of violating assumptions, and the
types of remedial action most useful in dealing with assumption viola-
tions are available in most intermediate statistics texts. I will address
these issues as they relate to the use of dummy variables and return to
discussions of heteroscedasticity and autocorrelation later in the text.

We can evaluate the overall fit of the regression model to the sample
datausing R?, which is the square of the multiple correlation coefficient,
Tests of statistical significance for individual regression coefficients
are accomplished through ¢ tests. We use the ¢ distribution rather than
the Z distribution because we generally do not know the value of the
population variance (02); therefore we produce an estimate of the
population variance using the error variance of the sample. When
testing against a null hypothesis that the effect (or partial effect) is equal
to zero, the ¢ test reduces to the ratio of the coefficient estimate to its
standard error.

Because three independent variables are included in the specifica-
tion, By, By, and B estimate the “partial” effects of X;, X2, and Xson Y.
Partial effects are generaily not equal to bivariate effects {(when Y is
regressed on only one independent variable) because independent vari-
ables included in a given specification are often correlated with each
other and share covariation with ¥;. When the correlation between one
independent variable (e.g., X17) and one or more remaining independent
variables is perfect {i.e., when one independent variable is a perfect
Hnear function of one or more of the other independent variables
included in the specification), sample estimates are indeterminate. At
an intuitive level, we can view the reason for this indeterminacy as a
function of the absence of “unique” information: The information
contained in the distribution of X}; simply reproduces the statistical
information already included on the right-hand side of the equation; it
is impossible to estimate the net (i.e., partial or “unique™) effect of X;;
on Y when X,; provides no net (partial or unique) distributional infor-
mation. This situation is referred to as perfect multicollinearity. Statis-
tically, the reason for the indeterminacy can be understood by recalling
exactly what we mean when we say other independent variables are
“controlled” in the estimation of “partial” regression coefficients. To
“hold constant” in a statistical sense requires that we remove from the




Y; distribution all variability related to other independent variables in
the model. Statistical “control” is therefore a procedure of partitioning
variances. In our sample regression function (Equation 1.2), we remove
from Y the linear effects of X,; and X3; when determining By. In other
words, if Xy; and X3; were not allowed to vary in our sample, we would
not observe in the distribution of ¥ or in the distribution of X); that
portion of variability that is associated with the variability of X5; and
Xs;. Therefore, in estimating the partial effect of X;; on ¥, we do not
want that part of the variability in X); or ¥ to be considered. Essentially,
then, the partial effect of X,; on Y; is based on two distributions of
residuals——the residual distribution of ¥; after the linear effects of X,
and X3; have been removed from Y;, and the residual distribution of Xy;
after the linear effects of X5; and X3; have been subtracted from X,;. In
the case of perfect multicollinearity, this residual distribution of X,; is
a constant—zero.

When we include dummy variables in a regression equation, the fogic
of regression estimation remains the same: We are predicting condi-
tional means on the dependent variable—that is, average values of ¥
given specific values on the independent variables. The difference is
that specific codes on dummy variables designate membership in par-
ticular groups or the presence versus absence of particular characteris-
tics. Therefore, predicting expected values of ¥ for a particular combi-
nation of dummy variable codes can be the same thing as predicting a
group mean value. As is the case when the independent variables are
continuous, this partialing procedure is also central to the interpretation
of regression with dummy variabies.

2. CREATING DUMMY VARIABLES

The coding of categorical data requires the development of mutually
exclusive and exhaustive categories. The same rules apply to the cre-
ation of demmy variables, We need to construct a large enough set of
dummy variables to exhaust the information contained in the original
qualitative scale. Categorical variables can be dichotomous or polytom-
ous. A categorical variable with j categories requires a set of j - 1
dummy variables in order to capture all the distributional information
contained in the original set of distinctions. Using binary (0,1) coding,
dummy variables are always dichotomous variables. All respondents
who are members of a particular category are assigned a code of 1;




respondents not in that particular category receive a code of 0. Follow-
ing this coding convention, we construct a set of dummy variabies for
a given categorization so that any particular respondent is coded 1 on
one and only one dummy variable in the set. The binary coding can be
thought of as similar to an electrical switch: A code of 1 signals that a
given category is “on” for a respondent (i.e., he or she is a member of
that particular group, or a particular characteristic is present); for
nonmembers, the dummy variable denoting that category is switched
“off” (i.e., the characteristic is absent).

The rationale for including j — 1 dummy variables for a qualitative
variable of j categories follows directly from the requirements of the
classical linear regression model. In particular, the presumption of no
perfect collinearity among independent variables requires that none of
the explanatory variables can be written as a perfect linear combination
of remaining explanatory variables in the model. Consider the dummy
variable representing race in our example. If, in addition to a dummy
variable (BLACK) coded 1 for a respondent who is African American,
we include a second dummy variable (WHITE) coded | for a respondent
who is not African American, we have specified a model in which a
perfect linear relationship exists between the two independent vari-
ables, because

BLACK = 1 - WHITE.

Therefore, the information contained in WHITE is redundant and un-
necessary to the estimation.

When the original variable has only two categories, as in the case of
race in this analysis, a single dummy variable is sufficient to capture
the information. The category not named as a dummy variable serves
as the reference group. If the original variable has more than two
categories, the number of dummy variables is governed by the number
of separate categories one wishes to contrast in the analysis. By way of
illustration, consider the variable occupation, as measured by the cen-
sus coding of 12 single-digit occupational categories. In this example,
we could have as many as 11 dummy variables, the twelfth category
serving as our reference group. In order to make our illustrative analysis
a bit more manageable, however, we will exclude farm managers and
farm laborers and combine some of the remaining groups so that we
consider only six separate categories: OCC, (upper white-collar work-
ers—e.g., professionals, managers), OCC; (lower white-collar work-




ers-—clerks, salesmen)}, QCC; (skilled craftsmen—carpenters, plumb-
ers, electricians), OCCy (operatives—welders, weavers, sewers, and
stitchers in manufacturing), OCCs (nonhousehold service workers—
barbers, janitors, practical nurses), and OCCg (laborers-—fishermen,
lumbermen, teamsters). Following the rule set forth above, a variable
with six mutually exclusive and exhaustive categories requires five
dummy variables to represent all the information contained in the
original qualitative variable. Five of the catepories will be represented
by separate dummy variables; the sixth category (the “excluded” cate-
gory, i.e., the category not named by one of the dummy variables) will
serve as the reference group.

Choosing a Reference Group

Before we actually code the data for some number of categorical
variables, we must choose our reference groups. Which groups do we
want to serve as the comparison points? For each categorical variable,
we must designate a single category as the reference group. In our
example, if we choose “white” as the reference category, then the
bivariate regression coefficient for the dummy variable BLACK will
express the average income for African American men relative to the
average income for white American men. In other words, the regression
coefficient will express the difference between the two group means. If
“white” is the reference group, then the bivariate regression coefficient,
B, for the dummy variable BLACK is as follows:

BBLACK = YBLACK - YWH!TE .

In contrast, if African Americans serve as the reference group, then the
bivariate regression coefficient, B, for the dummy variable WHITE is:

, - —
B WHITE — yWHlTE - YBLACK *

Regardless of which category is chosen as the reference group, the
absolute value of the difference in average income will be the same.
Choosing a reference group for a polytomous variable such as occu-
pation is somewhat more involved, The regression coefficients for all
accupational dummy variables will be evaluated relative to this single
reference group. Aithough we can aiways use the information from any
single regression estimation (with its particular specification regarding
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reference group) to generate additional comparisons, there are a few
guidelines that may prove useful from the standpoint of interpreting
regression estimates:

1. The reference group should be well defined. A residual category (“other”)
may not be a good choice, as itis unclear exactly what the composition of
the “other” group is. It is also unlikely that the substantive interest in
estimating group differences is reflected in comparisons of more homoge-
neous categories to this residual category. Therefore, by choosing a clearly
defined group as reference point, we can explicitly build into the equation
the group comparisons that are substantively important.

2. When there is an underlying ordinality to the qualitative categories (as in
this case of occupation), some researchers choose as reference group &
category at the upper or lower boundary, whereas others prefer to designate
a category that is roughly midrange. Although the former approach may
provide an array of coefficient estimates that can be interpreted relative to
some anchor or ceiling group, the latter approach reduces the liketihood
that less careful researchers will seize on one statistically significant
coefficient (e.g., the contrast between laborers and upper white-coliar
workers) without first checking to see if occupation, as a multicategory
predictor, registers a significant effect (this issue is discussed further at
the end of Chapter 4).

3. A reference group should contain a sufficient number of cases 10 allow a
reasonably precise estimate of the subgroup mean. Occasionally, one may
define a separate category that contains only a small aumber of observa-
tions in an effort to keep other categories “pure.” When this strategy is
used, the reference category should be one of the more heavily populated
categories.

Readers should keep in mind that, on statistical grounds, the choice of
reference group is arbitrary; assuming one follows appropriate proce-
dures of interpretation and inference, no choice can be “wrong.” On
practical grounds, the “best” choice is the one that minimizes the
number of additional computations necessary to produce the informa-
tion of most substantive interest.

Table 2.1 provides an illustration of the coding procedures just
described. For the race variable, we choose white as the reference
group; for occupation, we choose upper white-collar. African American
respondents are coded 1 on BLACK and white respondents are coded
0. OCC,, OCC3, OCCq, OCCs, and OCCy are a set of five dummy
variables designed to capture the information from the six-category
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TABLE 2.1 ‘
[Hustration of Dummy Variable Coding for Race and Occupation

Case  Race Occupation BLACK 0CCy OCC3y 0CCi OCCs OCCs
1 black lower white-collar 1 1 0 0 4] O
2 white craftsman 0 ¢ 1 0 0 0
3 white upper white-collar 0 0 0 0 0 o
4 black operative 1 0 O 1 0 0
5 black taborer t 0 0 0 0 i
6 white lower white-collar [ 1 0 0 0 0
7 white craftsman 0 1] 1 0 [ ]
8 white service 0 ] 0 [¥] i ]
9 black service H 0 0 0 i t]

10 white upper white-collar 0 1 0 0 a 0

11 white operative 0 0 ) 1 ] 0

12 white fower white-collar 0 1 ] 4] 0 0

i3 black craftsman 1 0 1 0 0 0

14 white upper white-collar G 0 ¢ 0 0 0

15 black upper white-collar 1 0 0 0 0 0

occupational variable: OCC; refers to lower white-collar workers, OCCs
to skilled craftsmen, OCC4 to operatives, OCCs to service workers, and
OCCg to laborers. Cases 3, 14, and 15 receive 0 codes on all five dummy
variables because these three respondents were upper white-collar work-
ers. In fact, Cases 3 and 14 receive 0 codes on all the dummy variables,
because these two respondents are members of the reference categories
for both qualitative variables: white and upper white-collar workers.
The qualitative information contained in the original race and occu-
pation measures has thus been translated into information that can be
used to calculate measures of centraltendency, measures of dispersion,
measures of correlation, and regression coefficients. An important fea-
ture of using j— 1 dummy variables rather than the original categorical
variable lies in the fact that each dummy variable captures one piece of
the categorical information from the original measure. For example,
each dummy variable records the presence or absence of a single
occupational characteristic (e.g., 1 if the characteristic of being a
laborer is present, (¢ if that characteristic is absent). We have not
fundamentally altered the content of the information contained in either
the race or occupation variables, we have only chosen an alternative
form of representing that information. Therefore, so long as we adjust
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our interpretation of regression coefficients to be consistent with the
underlying measurement properties of our independent variables, we
are on solid statistical ground.

Descriptive Statistics

DISTRIBUTIGNAL STATISTICS

Because dummy variables refer to qualitative measures, descriptive
information on category frequencies or proportions is a useful way to
display the distributions. Two of the most common measures of central
tendency—the mode and the mean-—can yield useful information as well.

The mean value of a dummy variable reports the proportion of cases
in the category coded 1. Recall that 2 proportion is simply a relative
frequency—a count of the number of cases in a given category divided
by the total number of cases (i.e., n;/N). Recall also that the formuia for k
a mean value requires that the value of the measure be summed across
all cases and then divided by the number of cases. Given that al] cases
are coded either 0 or 1 on a dummy variable, summing values across all
cases is eguivalent to counting the number of cases coded 1. Therefore,
the formulas for a proportion and for the mean are equivalent in the case
of dummy variables.

Likewise, the formula for the variance of a dummy variable can be
related to the more general variance formula for continuous mMeasures.

(EXOIN = (X JNY = N = p} = py = pj =p(1 =P [21]

When X; is continuous, the variance formula is defined by the expres-
sion to the left of the first equal sign. When applying the same formula
to a dummy variable, the term ZX,Z reduces to nj, the number of cases
coded 1. Having already established that the term immediately to the
1eft of the first equal sign, the mean squared, is equivalent to the square
of the proportion of cases coded 1 fora dummy variable, we demonstrate
that the variance for a dummy variable is the product of the proportion
of cases coded 1 and its complement (the proportion of cases coded 0).

Variability in a dummy variable is maximized when cases are evenly
split between the two categories. Think about a public opinion question:
Do you support increasing taxes for public education? Maximum diver-
sity—in this case, maximum disagreement over tax policy--—-occurs
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when people are evenly divided on the issue; the probability of choosing
at random two members of the population who agree on the issue is at
its lowest point. As we move toward consensus (as the percentage of
respondents indicating support or opposition approaches 100), diversity
of opinion (or variability) declines.

CORRELATION

In addition to measures that summarize the distributions of single
variables, researchers are also interested in measures of association that
summarize the relationship between variables. Typically we investigate
the relationship between qualitative variables through cross-tabular
analysis, and we assess the relationship between qualitative and quan-
titative measures by examining differences in means across categories
of the discrete variable. Limiting ourselves initially to three measures,
we can look at differences in mean income by occupation and race, as
in the example shown in Table 2.2.

Three basic patterns are apparent in these descriptive statistics:

1. Blacks have a lower mean income than whites.

2. Mean income declines as we move from upper white-collar workers to
laborers.

3. The proportion of workers who are black increases as we move from the
upper white-collar to the laborer category.

Now we must develop ways to summarize the three bivariate relation-
ships, test their significance, and extend our ability to assess relation-
ships while controlling for additional relevant factors.

Given that both the mean and the variance of a dummy variable are
linked to p;, relational measures that are based on sample variances and
covariances will also be linked to the proportional distribution of the
dummy variable. A common measure of association is the correlation
coefficient, a measure based on the covariance between two variables
relative to the dispersion of their distributions. The correlation between
two quantitative measures is sensitive to the amount of variance in the
original distributions. Because the variance of a dummy variable is a
direct function of p;, the magnitude of a correlation involving a dummy
variable will reflect the relative size of the category frequencies.

Table 2.3 contains estimated zero-order correlation coefficieats for
the dummy variables constructed from race and occupation and the
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TABLE 2.2
Means and Standard Deviations of Income by Race, Qccupation;
QOccupation by Race
Mean Income Percentage Black
Race
white 7.821.9
(N =2,290) {4,974.8)
black 4,619.0
(N=921) (2,428.13
Occupation
upper white-collar (OCCy) 10,702.1 6.8
(N = 644) (7,166.5)
whites 10,960.3
(N = 602) (7.273.2)
blacks 7.001.8
(N=42) (3,874.5)
lower white-collar (OCGC3) 7.680.9 17.1
(N = 337) (4,228.7)
whites 8,061.3
(N =279 {4,462.6)
blacks 5,850.8
(N = 58) (2,039.9)
skilled (OCCs) 6,945.0 17.7
(N=810) (2,864.9)
whites 17,3347
(N = 665) (2,786.9)
blacks 51578
{N = 145) (2,526.0)
operative (OCCy) 5,553.9 38.9
(N = 788) (2,454.1)
whites 6,085.3
(N =481} (2,414.6)
blacks 4,721.4
(N = 307) {2,281.5)
service (OCCs) 4,434.4 51.2
(N =287 (2,352.0)
whites 4,805.6
(N=139) {2,626.5)
blacks 40858
(N = 148) (2,008.3)
iaborer {OCCg) 4,090.0 64.0
(N = 345) (2,020.13
whites 4,777.3
(N=124) (1,800.1)
blacks 3,043
(N=221) (1,986.6}
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TABLE 2.3
Correlation Coefficients: Race, Occupation, and Income

Low
White-Collar  Skilled Operative  Service Laborer
(0CCy) (OCCy) {OCCa) {OCCs) {0CCs) INCOME

BLACK ~087***E  _ J3ger* 131w L15Twws 2T2Fx . _3]3k*x

0ce,

(tow white-coliar) —. 199%*x  _ {gaw*x . JOBRKF .. JIGaE LQ5TH*

0CC;

(skilled) ~328%%% 18w JOgRR% 007

0CC,

(operative) — 178%x%  _ JOTHEE 1 G6%E

0CCs

(service) = 108*** . JFOkRE

0CCy

(laborer)} w 2]1%%* ¢
Mean 106 250 244 .089 407 6,890
s.d. 308 433 430 285 309 4,622

NOTE: ***Cosfficient is statistically significant at the 00 level,

dependent variable, eamed income. The far right column reports correla-
tions (point biserial correlation coefficients) between each dummy variable
and INCOME. The first value (—.313) summarizes the relationship be-
tween the dummy variable BLACK and INCOME. The negative sign
indicates that the higher code on BLACK (coded | if African American)
is associated with smailer values on INCOME; in other words, the mean
value of INCOME among African-American men is lower than the mean
INCOME for other men. By squaring the correlation coefficient, we
calculate the proportion of the sample variance in INCOME that is “ex-
plained” by race. In this case, almost 10% of the variance in income is
accounted for by the group difference in mean income.,

Because more than one dummy variable was necessary to capture the
information in the classification of occupations, we have five correla-
tion coefficients describing the relationship between OCCUPATION
and INCOME—one for each specified occupational category, Each of
these five zero-order correlation coefficients assesses the income dif-
ferential between the designated category (e.g., service workers in the
case of OCCs) and all other workers combined. For example, the
correlation between OCCs and INCOME is —.170, indicating that ser-
vice workers average lower incomes than all other workers taken
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together (i.e., upper white-collar, lower white-collar, skilled, oper-
atives, and laborers combined as a single group). By squaring the
zero-order correlation coefficient, we estimate how much of the varia-
tion in INCOME is due to the fact that men in one occupational group
earn more or less than men who are not in that group. Here, 2.89% of
the variance in INCOME is due to the fact that service workers average
lower earnings than all other categories of workers taken together, Note
also that the correlation between OCCs (skilled workers versus all
others) and INCOME is small and nonsignificant. From this measure
we learn that the average income of skilled workers is not significantly
different from the mean income for all other categories of workers
combined, a finding consistent with the intermediate position of skilled
workers in both the occupation and income distributions.

Remaining columns of correlations refer to the association between
two dummy variables taken two at a time. Correlations among two
dummy variables are equivalent to phi (¢} coefficients and therefore are
related to xz, because @ = (leN )Vz. Both measures capture the relation-
ship between measures ina 2 x2 table. The first row contains correla-
tions between BLACK and each of the dummy variables constructed
from OCCUPATION. The negative comelation between OCC; and BLACK
suggests that the proportion of blacks in lower white-collar positions is
smaller than the proportion of blacks in other occupational categories.
On the other hand, the positive correlation coefficients batween BLACK
and OCC4, OCCs, and OCCg indicate that the proportion of blacks who
are operatives (38.9%j, service workers (57.2%), or laborers (64.0%)
is greater than the proportion who are not operatives (25.1%), not
service workers (26.3%), or not laborers (24.3%). The correlation is
strongest between BLACK and OCCq (laborers) because the difference
in proportions between the two categories is largest here.”

PARTIAL CORRELATIONS

Partial correlation coefficients allow us to assess the relationship
between a dependent variable and an independent variable while other
independent variables are held constant. Table 2.4 reports a series of
partial correlation coefficients between OCC; (lower white-collar) and
INCOME (Y) as successive controls are introduced.

Whereas the zero-order correlation between OCCy and INCOME
simply contrasts average income for lower white-collar workers to all
other workers, the first-order partial correlation coefficient, ryocc2.oce3s
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TABLE 2.4
Partial and Semipartial Correlation Coefficients for
Occupation Dummies and Income

ry00c2 = (57+¥

Fyocc2.occl = .060***

Ty0ce2.0ec3, 0004 = 011

Ty.oee2.0003,0004,0008 = . (0g%

Fy,oect.occ3,ocnd,oces occh LRl Y b

Partial Semipartial Semipartial®

ry,occ2.occ3,oeed, oced 0006 - 171%%% - 19 H** 036
Fy,nced.oncd,oced, mecs,ouch — 27 R —. 294 x% 087
Fy,occd.oce2,0ced,0ecs 0006 - 3GG —387Hx* A50
ry,occS.occ‘Z.occ3.0cc4.ucc6 e 33PN =357 ~127
ry,occﬁ.occz,ocd.ocnd.uccs R-T5 i —.394%* 155

NOTE: ***Cocflicient is statistically significant at the .001 level.

controls for the crafismen category. Because craftsmen are now held to
the side, this partial correlation captures in correlational terms the
income differential between lower white-collar workers and workers
who are neither lower white-collar workers nor crafismen, The next
coefficient is a second-order partial correlation coefficient, because it
controls for two independent variables (OCC3 and OCC,, the skilled
and operative categories). In this example, the nonsignificance of the
coefficient suggests that average income for lower white-collar workers
is not significantly different from the average income of upper white-
collar workers, laborers, and service workers combined—no doubt
because this combination of high- and low-income groups results in a
midrange mean value. As additional occupational categories are held
constant—that is, excluded from the comparison—the higher order partials
become increasingly negative. The highest or fourth-order partial controls
for all other included occupational categories; it indicates that lower
white-collar workers average significantly lower incomes than upper white-
collar workers—the reference group, which is the only remaining group
because all other included groups are controlled.

The lower panel of Table 2.4 provides fourth-order partial correlation
coefficients for all occupational dummy variables. In each case, the
partial captures the relationship between INCOME and a dichotomy
represented by the specified occupational category and upper white-collar
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workers (the reference group). The negative values of the partials increase
as we move down the column because the magnitude of the income
difference is greatest when laborers are compared with upper white-collar
workers and smallest when categories of white-collar workers are compared.
The middle and right columns of Table 2.4 report values for the
semipartial and squared semipartial correlation coefficients. Semipar-
tial correlation coefficients are useful bridges between correlation and
regression. The partialing procedure used in the construction of partial
correlation coefficients is the same as that used in the construction of
partial regression coefficients; it affects the distributions of both the
dependent and the independent variables. However, with semipartial
correlation coefficients, the effects of independent variables that are
being controlied are not partialed from the dependent variable (Cohen
& Cohen, 1983). The square of the semipartial correlation coefficient
indicates an independent variable’s unique contribution to explained
variance in Y;, where “unique” explained variance is defined as that
portion of the variance in Y; that is attributable to one independent
variable and not shared with other independent variables serving as
controls. For example, the first squared semipartial correlation coeffi-
cient between INCOME and OCC,, controlling for OCC3, 0CC4, OCC s,
and OCC, is .036. By defining lower white-collar workers as a category
distinct from upper white-collar workers, we account for 3.6% of the
variance in INCOME. In other words, 3.6% of the variance in INCOME
is explained by the fact that lower white-collar workers average a different
level of earnings from upper white-collar workers. Similarly, 15.5% of the
variance in INCOME can be explained by specifying the earnings differ-
entia! between laborers and upper white-collar workers. Other factors
equal, the more disparate the group values, the larger the amount of
explained variance we sacrifice by ignoring the group difference.

3. USING DUMMY VARIABLES
AS REGRESSORS

In this chapter we will explore four regression models with dummy
variables. The simplest model expresses the dependent variable, earned
income, as a linear function of a single dummy variable. The second
model is similar to the first in that it expresses income as a linear
function of a single explanatory characteristic—in this case, occupation
rather than race; however, because occupation is polytomous, the regres-
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sion specification requires five dummy variables. In the third model,
we include both qualitative variables to determine whether racial dif-
ferences in income can be located in race-linked differences in occupa-
tional distributions. In the last model in this chapter, we expand the
specification to include quantitative explanatory variables in addition
to the dummy variables for occupation and race.

In estimating a bivariate regression equation, we determine whether the
expected value of the dependent variable differs in a systematic way for
given values of the independent variable. The regression equation there-
fore extends the mean from a single point representing the expected value
of the dependent variable, E(Y}), to a line constructed from a continuous
series of values. Each point on the line estimates the expected value of ¥;
conditional on a particular value of Xy, denoted E(Y;1X;). The continuity
in this series of expected values is possible because Xy, is itself a continuous
measure, presenting an unlimited number of potential values. ¢

When we deal with dummy variables, the independent variables are discrete
measures limited to two possible values. In modeling a continuous dependent
variable as a function of a single dummy variable (Dj;), we cannot claim to
produce a regression line. Instead, we produce an expected (or predicted) value
of Y, for each of these two possible values: the predicted value of ¥; when Dj;
= 1 and the predicted value of ¥; when Dj; = 0. These predicted values
correspond to conditional means: the mean of ¥; for subgroup /.

To see how this works, consider the following three models involving
INCOME (Y}), a durmmy variable for race (BLACK}, and dummy variables
for occupation (QCC; through OCCs):

Model 1: Y; = f(race) = B, + B;BLACK + u;

Model 2: ¥, = f(occupation) = B, + B,0CC, + B,0CC; + B,0CC,
+ B,0CC; + B,OCC, + u,

Model 3: ¥, = f(race, occupation) = B, + §,BLACK + B,0CC,
+ B,0CC, + B,0CC,
+ BsOCC; + B,OCC, + u; .

Regression With One Dummy Variable

In Model 1, INCOME is regressed on BLACK to determine whether
race is a useful predictor of earnings income. Results from this regres-
sion are presented in the first column of Table 3.1. An interpretation of
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TABLE 3.1
Regression Results for Models 1, 2, and 3
Model 1 Model 2 Model 3
Constant 7,821.9 10,702.1 10,811.4
¥1.9 (160.8) (158.9
BLACK -3,202.9 -1,676.0
{171.6) (172.4)
0CC, -3,021.2 ~2,842.1
(274.4) @70
0CC; -3,757.1 -3,566.4
(215.5) (213.3)
oCC, ~5,148.2 -4,604.5
(216.8) (2209
0CCs ~6,267.7 -5,512.7
(289.7) (295.9)
0CCs —6,612.1 ~5,647.8 ¢
(272.3) (286.2)
R 09792 122400 24624
F 348.3 185.0 174.4
Change from R’g .148
F (change} 126.1

Variance/Covariance Matrix of Regression Coefficients for Model 2
0ocC: 0CC3 0CCs 0CCs 0CCs

oCcCs 75.309.07

0OCC; 25,870.70 46,439.50

0CCy 25,870.70 25,870.70 47,013.76

0OCCs 25,870.70 25,870.70 25,870.70 83,922.03

OCCs 25,870.70 25,870.70 25,870.70 25,870.70 74,162.67

NOTE: Estimated regression coefficients, with standard ercors (in parenthoses).

these coefficients that is appropriate for both continuous and discrete
independent variables is to regard the constant {Bo) as the expected value
of ¥;whenall independent variables are equal to zero, and B, as the change
in the expected value of Y; for each unit change in Xi. When Xy is
continuous, the distribution of predicted Y; values is also continuous;
therefore, the regression coefficient indicates a slope. In contrast, when X
is a dummy variable, the predicted vaiue of ¥; changes by By units each
time membership in the specified category is switched on or off, because
a “unit” change in a dummy variable (from Oto 1 or from 1 to 0) indicates
membership or nonmembership in the designated category.




21

In this example, the negative coefficient for BLACK indicates that
predicted income for respondents who are black is $3,202.90 less than
predicted income for whites. Calculating predicted values of Y; relies
on routine substitution. When BLACK = 1, predicted income equals By
+ By, or 7,821.9 — 3,202.9 = $4,619. When BLACK = 0, predicted
income equals By or $7,821.90. The reader can verify that these pre-
dicted values are the same values as the subgroup means reported in
Table 2.2.

Significance tests for dummy variable coefficients follow standard
procedures. The coefficient for BLACK measures the effect of being
black rather than white on expected INCOME; therefore, the standard
error of the coefficient for BLACK provides the standard error of the
difference between expected income for whites and expected income
for blacks. When testing against a null hypothesis of a zero effect (i.e.,
no subgroup difference in expected INCOME), the ¢ test reduces to the ¢
ratio of the coefficient to the standard error. Similarly, because Model
1 contains a single independent variable, the F test for the model is a
test of the same null hypothesis, and the value of F is the square of the
t value. The information of R*—that racial differences explain almost
10% of the variation in INCOME-—was already established through the
earlier examination of zero-order correlation coefficients.

This initial example has illustrated both the similarities and differ-
ences of regression interpretation when the independent variable is a
dummy variable rather than a quantitative measure. The constant esti-
mates the expected value of Y; for the reference group (whites); B,
estimates the effect of displaying the trait indicated by the dummy
variable (i.e., the effect of being black). This effect captures the differ-
ence in expected INCOME for blacks and whites. Therefore, the null
hypothesis that B, = 0 in Model 1 is equivalent to the null hypothesis,
Ho: aracks — Bwartes = 0. Both the 7 test for By and the F test for Model
1 are essentially difference of means tests.*

Regression With Multiple Dummy Variables

Model 2 estimates INCOME as a function of occupational category
represented by the five dummy variables already described. Results
from this regression are reported in the middle column of Table 3.1.
Consistent with the interpretation provided for Model 1, the value of
the constant, 10,702.1, reports expected income for upper white-collar
workers (the reference group). Remaining regression coefficients estimate
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the effect of being in a particular occupational category compared with
the reference category. The coefficient for OCC; tells us that, on
average, lower white-collar workers earn $3,021.20 less than upper
white-collar workers, or $7,680.90. In contrast, laborers average $6,612.10
less than upper white-collar workers, or only $4,090.

Because distinctions among occupational groups are captured by the
entire set of dummy variables rather than by any single dummy variable,
the appropriate significance test for the effect of occupational category
on INCOME is the F test for the model. As a test of the aull hypothesis
that B, through Ps in Model 2 are simultaneously zero, the F test is a
test of the hypothesis that the expected value of INCOME for all
occupational groups is the same. In addition, as the F test can be
expressed as the ratio of R? (divided by k degrees of freedom, where k
equals the number of independent variables) to 1 — R? (divided by N -
k - 1 degrees of freedom), the F test can also be considered a test of the,,
significance of R%. Therefore, rejection of the null hypothesis suggests
that a nonzero amount of variation in INCOME is explained by the
respondent’s occupational location. Based on results for Model 2, we
have

F _ 22400/5
5.3205 7 (] - .22400)/3205

= 185.0,

which is significant at better than the .001 level.’ Having established
the statistical significance of occupation, we can now turn o the ¢ tests
for individual coefficients that show that the expected INCOME for
each included occupational category is significantly different from that
of the reference group.

Assessing Differences
Between Specified Categories

The ¢ tests associated with the regression coefficients of dummy
variables allow us to test the significance of the effect of being in the
designated category rather than in the reference group. However, it is
not immediately apparent whether the included categories are different
from each other. For example, OCCg (laborers) has the largest negative
regression coefficient and therefore the lowest expected income. But
how do we know if the expected income for laborers is smaller than the
expected income for service workers, or for operatives?




23

Because B; = E(¥;10CC; = 1) — E(Y;iref), the difference in expected
income for included categories is equal to the difference between their
coefficients, (B; — B}, where B; refers to the regression coefficient for
a dummy variable designating category j and By is the regression
coefficient for a dummy variable designating a different category. In
order to test for a difference in the effects of OCC4 and OCCg {the effect
of being an operative rather than a laborer), we must use a ¢ test for the
difference in regression coefficients:

t = (B; - B)/{var(B) + var(B,) — 2cov(B,B,)]". 3.1]

As the variances of the coefficients are simply their squared standard
errors, they are routinely available. In addition, many statistical pack-
ages provide the option of printing the variance/covariance matrix of
regression coefficients, allowing the researcher the flexibility to com- +
pute these additional tests.’

Substituting estimated values for QCC4 and OCC, into Equation 3.1,
for example, we have:

t=-6,612.1 - (-5,148.2)/[74,162.7 + 47,013.8 - 2(25,8'70.7}]!/2
= ~1,463.9/263.5 = -5.56. {3.2]

Using the conventional o = .05 1o determine critical ¢ values of £1.96,
it is clear that the effect of being a laborer differs from the effect of
being an operative—that is, that laborers and operatives do average
different levels of income.

Adding a Second Qualitative Measure

Recall that when we looked at the subgroup means in Table 2.2, it
was clear that as we moved from upper white-collar workers to laborers,
not only did the average earnings decline, but the proportion of workers
who were black increased. We may want to determine whether the racial
differences in INCOME persist when we control for income differences
in occupation. To answer this question, we must examine the partial
regression coefficient for BLACK, controlling for occupation. Model 3
describes the appropriate specification, and the right-hand column of
Table 3.1 reports the resuits. The constant, 10,811.4, indicates expected
income when all independent variables are set to zero-—in other words,
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expected income for upper white-collar workers who are white. The
coefficient for BLACK, -1,676.0, indicates that once we take into
account the variation in INCOME that is linked to occupational cate-
gory and the fact that blacks are not uniformly distributed across all
occupational categories, blacks still average $1,676 less income than
whites. (Though smaller than was estimated in Model 1, this estimated
difference in INCOME remains significant at better than the .001 level.
The reduction in the magnitude of the coefficient for BLACK suggests
that one reason blacks average lower incomes than whites is because
they are concentrated in occupations in which workers, in general, have
Jower earnings.) Similarly, the partial regression coefficients associated
with occupation dummy variables estimate the effect of membership in
each of the designated categories {rather than in the reference group)
on expected INCOME, controlling for racial differences in both INCOME
and the distribution of respondents across occupational categories.

In deciding whether the partial effects of race (controlling for occu-

pation) or the partial effects of occupation (controlling for race) are
statistically significant, it is again appropriate 10 examine an F test.
Rather than rely on the F test for the equation as a whole, however, we
use the incremental F test to examine the explanatory power of one or
a set of categorical variables, while controlling for other variables. For
example, we can view Model 3 as a combination of the previous two
models in which we add dummy variables denoting occupational cate-
gory to a specification of racial differences. As before, the explanatory
power of occupational location is captured by the set of dummy vari-
ables rather than by any single dummy variable. Therefore, we can
assess the contribution of occupational location to the model by com-
paring the values of R? (or the mean regression sums of squares)
between Model 3 and Model 1. The null hypothesis states that B2
through P (as specified in Model 3) are simultaneously zero—in other
words, that once we control for racial differences in both INCOME and
occupational location, the expected value of earned income is the same
across occupational categories. The form of the test is

_ (R%»—Rf)/(kf-k,) [3.3]
T U-RY/(N-k- 1)

where R% is the value of R? in Model 3, Rzl is the comparable measure
in Model 1, N is the number of cases, and &, and ks are the number of
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independent variables included in Models 1 and 3, respectively. The
numerator calculates the increment to R” that results from specifying
the effects of occupational location relative to the difference in the
number of independent variables between Model 3 and Model 1. The
denominator is the proportion of variance left unexplained when both
race and occupation are included (from Model 3) divided by the appro-
priate degrees of freedom. In our example, the increment to R that
results from adding OCC, through OCCq to the specification is . 14832,
divided by five degrees of freedom; therefore the F test for the signifi-
cance of occupation contrelling for race is

F = (.14832/5)/(.75376/3,204) = 126.1.

Predicted Values

Because race, with 2 categories, and occupation, with 6 categories,
generate 12 distinct subgroups, Model 3 estimates 12 different values
for predicted INCOME. These predicted values correspond to 12 sub-
group means: 1 mean for each of the race-by-occupation subgroups.
Using the combination of coefficients described in Table 3.2, the reader
can reproduce the predicted values of INCOME for the various sub-
groups and compare the calculated values to the subgroup means re-
ported in Table 2.2. Recall that the predicied values generated from
Model 1 and Model 2 reproduced the subgroup means by race {when
based on estimates from Model 1) or by occupation (when based on
estimates from Model 2), as reported in Table 2.2. Unlike those earlier
results, however, it is immediately apparent that the 12 predicted values
of INCOME generated from Model 3 do not match the race-by-occupation
subgroup means reported in Table 2.2. Why the difference?

In Models 1 and 2, we limited our examination to one dimension—
either race or occupation. When we expanded the specification in
Model 3, we did so under a simplifying assumption—namely, that the
effect of BLACK (i.e., the estimated income difference between blacks
and whites) is the same across all occupational groups, and that income
differences across occupational groups are the same for whites and
blacks. We can see this assumption at work when we calculate the
predicted incomes for blacks and whites in various occupational groups:
The difference between white workers and black workers is always
1,676 (the value of B;), regardiess of occupation; the difference between
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TABLE 3.2
Predicted Values of Income From Model 3

Blacks Whites
oct Bo+ B1=9,1354 Bo=10,811.4
0CC2 Bo + B[ + Bz = 6,293.3 BQ + 82 = 7.969.3
0ce, By + By + By = 5.569.0 B + By=7,245.0
0CC, Bg + B+ By= 4,530.9 By + By= 6,206.9
0CCs By + By + By = 3.622.7 By + Bs = 5.298.7
QCCy By+ B+ Bg= 34876 By + Bg= 5,163.6

service workers and upper white-collar workers is —5,512.7 (the value
of Bs), regardless of race. This equivalence of effect is a function of
model specification.

Is the simplifying assumption built into the specification of Model 3
empirically defensible? The fact that predicted incomes for subgroups
differ from the subgroup means in Table 2.2 suggests that we may want
to change the specification. A later model (Model 5) will provide a
formal test of whether Model 3 or a model that allows differential
effects (i.e., interactions) is preferable.

Adding Quantitative WVariables
to the Specification

A benefit of using regression analysis even when some independent
variables are categorical is the flexibility of the modeling procedure.
Up to this point, we have limited our initial models to dummy variable
regressors, in order to allow the reader to become accustomed to the
interpretation of dummy variable coefficients. It is now time to expand
the specification and include both quantitative and dummy variable
regressors. Mode! 4 defines INCOME as a function of race, occupation,
education, and job tenure.

Model 4: Y, = f(race, occupation, education, tenure)
=By + BBLACK + B,0CC, + B;0CC; + B,OCC,
+ B;OCC; + BOCC, + B,EDUC + BsTENURE + u;

Both EDUC and TENURE are treated as quantitative independent vari-
ables measured in years. Results for Model 4 are reported in Table 3.3.
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TABLE 3.3
Regression Results for Model 4

Constant 5.761.1
{(359.0)
BLACK -1,188.1
(169.4)
OCC, -2,316.1
(261.8)
OCC; ~2,343.7
(2230
QCC, ~3,166.6
(231.5)
0CCs -31,918.5
(299.9)
0CC, ~3,606.8
{306.4)
EDUC 282.0
(23.1)
TENURE 84,7
(6.6)
& 31459
F 183.7
R change from Mode! 3 068
F (change) 159.7*%*

NOTE: Regression coefficients with standard errors (in parentheses).
«t3Coefficient is statistically significant at the 001 level.

The value of the constant is considerably smaller than in previous
estimations; more important, the change in specification has also changed
its substantive meaning. The constant now estimates expected income
for white upper white-collar workers who have zero years of schooling
and zero years of tenure on the job—an unlikely combination of traits.
The coefficient for BLACK now estimates the difference between
expected income for blacks and whites once variation in income caused
by occupation, education, and job tenure has been partialed out (i.e.,
$1,188.10). Coefficients for occupational dummy variables estimate the
net difference in expected income for each occupational group relative
to the reference group, controlling for other independent variables in
the equation; for example, lower white-collar workers average $2,316.10
less in expected income than upper white-collar workers, and so on.
Similarly, with race, occupation, and education held constant, each
additional year on the job translates into another $84.70 in earnings.
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Figure 3.1. Results of Model 4

Under comparable conditions, an additional year of education is asso-
ciated with an increase of $282 in expected income.

Given the addition of two quantitative independent variables to the
specification, we can think of Modet 4 as generating a series of regres-
sion planes and reintroduce the notions of intercept and slope or partial
slope. Within this context, we can think of the coefficients of the dummy
variables as denoting differential intercepts. Slopes, or partial slopes,
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can be associated only with quantitative independent variables; there-
fore, the coefficients associated with EDUC and TENURE provide
estimates of partial slopes. Figure 3.1 illustrates the results of Model 4.
In order to allow the reader to compare the intercept values and partial
slopes for education and job tenure quickly across subgroups, Figure
3.1 represents these relationships as lines in two-dimensional space
rather than planes in three-dimensional space. Because both education
and job tenure are measured in years, we can represent their partial
effects relative to the same scale.

Because the specification constrains estimation to an average effect
of education and an average effect of tenure across all respondents, all
solid lines have the same slope ($282 per year) and all broken lines have
the same slope ($84.70 per year). However, the ¥ intercepts are allowed
to differ by subgroup. Twelve separate intercepts are specified. Calcu-
Iation of these intercept values uses the same combination of coeffi-
cients described in Table 3.2; however, because the values of the
coefficients themselves have changed as a result of the expanded spec-
ification, the calculated intercepts will differ from the predicted dollar
values reported in Table 3.2. From each of the intercepts characterizing
a particular race-by-occupation subgroup emanates one solid line and
one broken line representing the partial effects of education and job
tenure, respectively. For each race-by-occupation subgroup, we can
identify (a) the appropriate Y intercept (the expected value of Y for a
member of a given subgroup with zero years of education and zero years
of job tenure), (b} the net change in the expected value of ¥ predicted
for an additional year of education for a particular subgroup (the solid
line), and (c) the net change in the expected value of Y predicted for an
additional year of job tenure for a particular subgroup (the broken line).
As was the case in Model 3, the equivalence of effect across subgroups
is an assumption embedded in the model specification; its empirical
adequacy remains to be tested.

4. ASSESSING GROUP
DIFFERENCES IN EFFECTS

The models in the previous chapter were developed by expanding the
number and types of independent variables included in the specifica-
tion. All multivariate models shared the simplifying assumption that the
effect of any single explanatory variable was the same across the range
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of any other explanatory variable. In other words, we included no
interaction terms to test whether the effect of occupation, education, or
tenure differed for blacks and whites. In this chapter, we develop
models to test the validity of that assumption by introducing interaction
terms into the specification. We then return to two issues that were
introduced earlier in the text—the consequences of violating assump-
tions of the regression model and alternative approaches to making
multiple comparisons with nonindependent tests.

Estimating average effects across subgroups can often give a useful
and parsimonious description of relationships. Occasionaily, however,
an independent variable (X;) has a differential effect on Y; across
categories or values of a second independent variable (Z;). When the
relationship between X; and ¥; depends on the value of Z;, we must
adjust model specification to allow the X;Y; relationship to vary relative
to values on Z;. Testing for these differential effects involves the use of
interaction terms—terms defined as the product of two or more inde-
pendent variables already included in the specification.

Interaction terms may be defined as the product of two quantitative
variables, of two dummy variables, or of one quantitative and one
dummy variable. In addition, more complex interactions may involve
more than two variables. In an earlier contribution to this series, Jaccard,
Turrisi, and Wan (1990) provide an excellent discussion of interaction
effects when all variables involved are continuous measures. We will
be concerped with the other combinations.

Consider first an interaction that involves two dummy variables (Dy;,
D7;) that have been constructed to measure the effects of two dichotomous
qualitative variables, gender and marital status. We might hypothesize, for
example, that the effect of being female (rather than male} depends on
whether you are married or unmarried. Under these circumstances, we
would want to test a model that specifies the effect of being female (by
including Dy}, the effect of being married (by including D), and the
interaction effect (by including the product variable Dy; x Iy;, which equals
1 when a respondent is both female and married). The coefficient for the
interaction term estimates the extent to which the effect of being female
differs for married and nonmarried sample members.

Now consider an interaction term defined by one quantitative vari-
able (X;) measuring age and our dummy variable Dy; for gender. Here,
we might hypothesize that the effect of age depends on whether one is
a man or a women. We would therefore want to specify a model that
estimates the effect of age (by including X;), the effect of gender (by
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including Dy;), and the interaction effect (by including the product
variable X; X D;;). Here, the interaction is equal to zero for all men; for
women, it assumes the value of their age. The coefficient for the
interaction term estimates the extent to which the effect of age for
women is smaller {or greater) than the effect of age for men.

Consideration of Figure 3.1 will help us conceptualize the types of
differential effects we may wish to examine in our illustrative data on
earnings among older male workers. We can see in Figure 3.1 that,
because of the way we specified Models 3 and 4, the income gap
between white and black workers belonging to the same occupational
group was constant for all occupations. s it possible that the income
disadvantage associated with being black is larger among upper white-
collar workers and smaller among laborers? In other words, is it possi-
ble that the gap between the Y intercepts for upper white-collar workers
is wider than the gap between Y intercepts for the two groups of :
laborers? A more general expression of this question asks whether the
effect of race may vary by occupational group or, equivalently, whether
the income advantage of being employed in certain types of occupations
operates the same for blacks and whites.

To gain a better understanding of some possible types of interaction
effects involving qualitative variables, let us turn to Table 4.1, which
displays three versions of the relationships among income, race, and
occupation. Each of the three parts of the table reports race-by-occupation
subgroup means on INCOME. Marginal values by row report mean
income by race; marginal values by column report mean income by
occupational category. The first two sections of the table contain hypo-
thetical data constructed to illustrate types of interaction effects yet
preserve the same subgroup means for each occupation. By reviewing
these, we can see that the marginal differences in income between
blacks and whites (reported to the far right) do not always accurately
capture the relationships among race, occupation, and income described
within each section.

For example, the set of data in the top of the table displays no
interaction effects. When no interaction effects exist, the difference in
mean income between blacks and whites reflected in the marginal
values ($3,203) is exactly the same size as the difference found when
one compares mean income for blacks and whites within columns (i.e.,
controlling for occupation category). The reader can verify this claim
by subtracting means in the first row from means in the second row
within each column. In this situation, the estimated effect of race in a
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TABLE 4.1
Possible Types of Interaction Effects

UwcC LWC Skill Oper Serv Labor

No interaction effects”

blacks 7,708 5,029 4,315 3,599 2,883 2,939 4,412

whites 10,911 8,232 7518 6,802 6,086 6,142 7613
10,702 7,681 6,945 5,554 4,434 4,090

Interaction effects invelving a difference in magnitude and direction®

blacks 7,002 5,851 5,158 6,111 5,120 4,628 5,470

whites 10,960 8,061 1,335 5,193 3,704 3,130 7479
10,702 7,681 6,945 5,554 4,434 4,080

Interaction effects involving a difference in magr:imdeb

blacks 7,002 5,851 5,158 4,721 4,086 3,704 4,619

whites 10,960 8,061 71,335 6,085 4,806 4,777 7,822
10,702 7,681 6,943 5,554 4,434 4,090

NOTE: a. Fabricated data.
b. Actual data.

regression model such as Mode! 3 (an effect that is averaged across all
occupational groups) provides an accurate picture of black/white dif-
ferences in earnings because the effect of race operates uniformly
across all occupational categories.

The second part of Table 4.1, also based on fabricated data, illustrates
a situation in which the effect of race differs in both magnitude and sign.
With this type of interaction, not only the effect of race (the magnitude
of the black/white difference in average income) varies across catego-
ries of occupation; the designation of advantage also varies. Suppose
subgroup means for our sample of workers were arrayed as they are in
the middle of Table 4.1, In this example, the marginal difference in
income by race (or the average effect of race) is $2,009, with whites
averaging higher incomes. But as we look within the table (i.e., as we
condition our comparison on specific occupational groups), we find that
the magnitude of the income gap between whites and blacks is not
always the same. The gap is widest among upper white-collar workers
(33,958) and smallest among operatives ($913). Because the income
gap between whites and blacks does not appear to be uniform across
occupational groups, we identify an interaction effect. Further, the
income gap is not always in the same direction. Whites average higher
earnings only in the upper white-collar, lower white-collar, and skilled
categories. Among operatives, service workers, and laborers, blacks
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average higher incomes. It is the shift in the direction of the difference
that characterizes this particular type of interaction effect. The marginal
difference between incomes for whites and blacks therefore obscures
some important aspects of the race effect. By averaging across all
occupational groups, we are left with a summary race effect that is
reasonably accurate (in this hypothetical case) for lower white-collar
and skilled workers, but an underestimate of the race difference among
upper white-collar workers and an estimate in the wrong direction for
remaining categories of workers.

The botiom part of Table 4.1 aliows us to compare values from our
actual data with the fabricated alternative distributions. The values of
mean income for this section are also found in Table 2.2. In our actual
data, the marginal difference in income between blacks and whites is
$3,203 (the difference we estimated in the first regression model). But
when we look within occapational groups, we see that the difference in
income between blacks and whites depends on the occupational cate-
gory. The gap is largest among upper white-collar workers ($3,958) and
smallest among service workers ($720). However, the income differ-
ence is always in the same direction——black workers always average
smaller incomes. When dealing with this type of interaction, the aver-
age effect is always in the correct direction, but for some occupational
categories the estimate is too small and for others it is too large.

Specifying Interaction Effects

In order to test for interaction effects, we require a specification that
allows us to estimate differential effects and then ascertain their signif-
icance. We accomplish this goal by constructing five product terms and
adding these terms to the specification. Model 5 allows us to test for
the differential effects of race by occupation or, equivalently, the dif-
ferential effects of occupation by race.

Model 5: Y, = f(race, occ, educ, tenure)
= B, + B, BLACK + B,0CC, + B,0CC, + B,0CC,
+ BsOCC, + B,OCC, + B,EDUC + B, TENURE
+ BBLOCC, + B,,BLOCC; + B, BLOCC,
+ B,BLOCC, + B,;BLOCC, + u;

The new variables, BLOCC; through BLOCC,, are computed by
multiplying BLACK with each of the occupational dummy variables.
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TABLE 4.2
Regression Results for Model 5

Constant 5,794.8
(358.7)
BLACK -3,793.3
{610.1)
0CC, «2,274.9
(280.2)
0CC, -2,418.4
(232.7)
OCCy -3.427.2
(256.3)
QCCs -4,5134
{372.5)
0CC, -4,202.8
(399.0}
EDUC 292.9
(23.1)
TENURE 84.0
(6.6}
BLOCC, 1,501.2
(%23.0)
BLOCC, 2,326.2
(705.0)
BLOCC, 2,984.8
. {672.5}
BLOCCs 3,528.0
(761.5)
BLOCC 3,383.9
(747.3}
R’ 32138
F 116.46
R change from Model 4 007
F {change) 6.42%%%

NOTE: Regression coefficients with standard errors (in parentheses).
s+ rCoefficient is statistically significant at the 001 level.

For example, the product variable BLOCC, is coded 1 if the respondent
is both black and in a lower white-collar job; therefore the increment
or decrement to average earnings estimated by the coefficient for
BLOCC, applies only to this distinct subset—black workers in lower
white-collar positions.

Results from Model 5 are presented in Table 4.2. Initially, we may
want to know whether allowing differential effects of race and occupa-
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tion resulted in a statistically significant improvement in the fit of the
model. We can answer this question by performing the increment to R?
test described in Equation 3.3. Comparing results from Model 5 to those
reported for Model 4, we have

006795
Fsn91= 67862/3,197 6.4,

an F value that is statistically significant at better than the .001 level.
Although the increment to explanatory power is far from overwhelm-
ing, the F test does suggest that the large sample size has enabled us to
estimate differential effects with reasonable accuracy.

Turning to the set of regression coefficients, the interpretation of the
constant is the same as it was in Model 4—predicted income for white
upper white-collar workers with zero years of education and tenure. In
addition, the coefficient for EDUC reports the average effect of educa-
tion on income, controlling for job tenure, race, occupation, and the
differential effects of race within occupational groups. The interpreta-
tion of the coefficient for TENURE is comparable,

Although coefficients for BLACK and the occupation dummy vari-
ables may appear to carry over from Model 4, they do not. Because of
the inclusion of the race-by-occupation product terms, their meaning
has changed. As we continue to work with 12 race-by-occupation
subgroups, we can explicate the role played by each particular coeffi-
cient by mapping the coefficients to their respective subgroups. This
mapping, reported in Table 4.3, is constructed by including a given
coefficient in the estimate of predicted INCOME for certain subgroups
only if an individual from that subgroup is coded 1 on the given dummy
variable (product variables included). For simplicity’s sake we ignore,
for the moment, coefficients for EDUC and TENURE, as if the values
for these independent variables had been set to zero.

Beginning with the coefficient for BLACK, we see that B; estimates
the difference in expected INCOME between black and white upper
white-collar workers. It no longer provides an estimate of the average
effect of BLACK across all occupational subgroups as it did in Model
4. The ¢ test for this coefficient, then, is a test of the null hypothesis
that, after having controlled for variation in income due to education
and tenure, expected income for black upper white-collar workers is
equal to the expected income for white upper white-collar workers—in
other words, that BLACK has no significant effect on expected income
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TABLE 4.3
Coefficients Used to Predict INCOME for
Race-by-Occupation Subgroups
Whites Blacks

Upper white-collar Bo Bo+ By
Lower white-collar By+ By By+ By + By + By
Skilled By + By By + By +B3+Bm
Operative Bg+ By By+ By + By + By
Service Bo+ By By+ B;+ Bs+ 8B
l.aborer By + By Bo+81 +85+Bi3

(net of other variables) for upper white-collar workers. Because this nuil
hypothesis can be rejected (the 1 value for this coefficient is —6.22), we

learn that, among upper white-collar workers, blacks average significantly

Jower incomes, controlling for all other factors specified in the model.

In a similar way, the coefficients for the occupation dummy variables
no longer provide an estimate of the average effect (for whites and blacks
together) of being in a particular occupational category {versus the refer-
ence group). Instead, B> (the coefficient for OCCy) estimates the difference
in expected eanings between lower white-collar and upper white-collar
workers who are white: White lower white-coliar workers average
$2,274.90 less in INCOME than white upper white-collar workers. Like-
wise, white operatives average $3,427.20 less in INCOME than white
upper white-collar workers. In other words, once product terms are gpeci-
fied, the coefficients for the original set of variables (in this case, BLACK
and OCC; through OCCg) refer to comparisons involving the reference
categories: By measures the effect of being BLLACK for upper white-collar

workers (the reference category for occupation); Bz through B measure

the effects of occupying an occupational category other than upper white-
coltar for white workers (the reference category for race). The r tests
associated with the regression coefficients for 0OCC, through OCCq are
therefore tests for significant differences among occupational groups for
white workers that can be generalized to the population. Results from Table
4.2 indicate that the estimated differences between upper white-collar
workers and other categories of occupation are significantly different from
zero for white workers.

The regression coefficients for the product variables estimate the
differential effect of occupation by race. Alternatively, we can view
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these coefficients as estimates of the differential effect of being BLACK
by occupational category. Why are both explanations acceptable? By
reviewing Table 4.3 we can formulate an answer to that question,
Whereas the difference in predicted INCOME between lower white-
collar workers and upper white-collar workers among white respon-
dents is captured by B, (=2,274.9), for blacks this contrast is captured
by B2 + By (—2,274.9 + 1,501.2). Therefore By estimates the difference
in the effect of being lower white-collar workers (rather than upper
white-collar workers) for blacks relative to whites. Because the coeffi-
cient for BLOCC,; is positive, the earnings gap between lower white-
collar workers and upper white-collar workers is $1,501.20 narrower
for blacks than for whites, or ~$773.70 rather than -$2,274.90. Simi-
larly, the difference in expected INCOME between blacks and whites
who are upper white-collar workers is By (~3,793.3); but the black/
white difference among lower white-collar workers is By + By (—3,793.3
+ 1,501.2). Bs estimates the difference in the effect of being black for
lower white-collar workers relative to upper white-collar workers, a
difference estimated as —3,793.3 for upper white-coilar workers, but at
-2,292.1 for lower white-coliar workers. Therefore, differences in ex-
pected INCOME by occupation for black workers are captured by the
sum of two coefficients §§; + By, where B; is the coefficient of an
occupation dummy variable (OCC; through OCCyg) and By is the coef-
ficient of a product variable. We can define the connection between p;
and Py as follows:

B; = E(Y;lwarre,occ) ~ E(Ydwarre occres) [4.1]
B = [E(Ylg ack0cc) — E(YlgLack.occer)] [4.2]
= [E(Y;lwsire,occ; = ECYilwarre.oceres)]
= [E(¥;lgLack.0ccp ~ EYilgrack.occre] — B; - [4.3]
Therefore,
B; + By = E(Y,lgy ack 0ccy) — E(YlpLack occrer): [4.4]

As we can see from Equation 4.2, the r tests reported for the regres-
sion coefficients of product terms are not tests of the significance of net
occupational differences in expected INCOME among blacks. Instead,
the hypotheses being tested investigate whether the net income differential
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between specific occupational groups and the reference group is the
same for blacks and whites.

If the coefficients for these product terms had been negative, we
would have had evidence that the earnings differences between upper
white-collar workers and remaining occupational groups were larger for
blacks than for whites; that is, the occupational differences in garnings
that had been identified for whites (through the negative coefficients
for OCC; through OCCq) would have been even larger for blacks
(through the extra negative effect captured by coefficients for the
product terms). Because these coefficients are positive, it appears that
the differences in earnings across occupational groups are more pro-
nounced for white workers, more compact for black workers; in fact,
there may be no significant occupational differences in INCOME among
black workers. It also seems that the black/white difference in expected
INCOME becomes narrower as we move down the occupational scale.

Let’s examine each of these tentative conclusions more carefully. To
address the former of these two conclusions, we must determine whether
there are significant occupational differences (once education and job
tenure are controlled) in expected INCOME among African Americans.
None of the ¢ tests routinely provided for coefficient estimates by
computer programs allows us 10 answer this question. The ! tests for the
interaction terms tell us whether the net effects of occupation are
significantly different for blacks and whites. However, knowing that the
aet effect of being either a skilled worker, an operative, a service
worker, or a laborer rather than an upper white-collar worker differs by
race does not in itself allow us to determine whether the net effect of
being in one occupational category rather than another is a reliable
predictor of INCOME among blacks. To answer this question, we must
go one step further.

In Table 4.4 we examine the race-specific effects of occupation for
blacks and whites, controlling for education and job tenure. The entries
for whites are the same as the coefficients for OCCy, QCC;, OCCs,
0OCCs, and OCCg in Table 4.2 because these coefficients estimate the
contrast between the reference group and other occupational groups for
whites. Recall that reported tests of statistical significance for these
coefficients indicate whether net occupational differences exist for
white workers in the population. In addition, if we wanted to test
whether white operatives average lower incomes than white skilled
workers—that is, to look at occupational differences in expected IN-
COME between these two occupational groups while controlling for
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TABLE 4.4
Net Effects of Occupation on INCOME by Race
Whites Blacks"
Lower white-collar -2,274.9 -773.7
{280.2) {776.71)
Skilled -2,418.4 -92.2
232.1) {683.5)
Operative -3,427.2 —442.4
(256.3) (646.5)
Service —4,513.4 -~985.4
(372.5) (682.6)
{.aborer ~4,202.8 -818.9
€399.0) (667.6)

NOTE: a. Entties for blacks were calculated by summing coefficients; standard errors were calculated
as [var{B;) + var(B;) + 2cov(By, B)}".

race, education, and job tenure—we: would use Equation 3.1, the coef-
ficients B3 = ~-2,418.4 and By = -3,427.2 from Model 5, and their
respective variances and covariance.

For blacks, the effects of being in one occupational category rather
than another are captured by two sets of coefficients: the coefficients
for the occupational dummy variables and the coefficients for the
race-by-occupation interaction terms. For example, to determine how
black lower white-collar workers and black upper white-collar workers
differ in terms of predicted INCOME, we must sum B; (the difference
between expected INCOME for upper and lower white-collar workers
among whites) and By (the measure of how the INCOME contrast
between upper and lower white-collar workers differs for blacks rela-
tive to whites). Referring to Table 4.3, we see that, among blacks,
calculating the expected INCOME for lower white-collar workers uses
the same two coefficients as the upper white-collar category plus two
more—B; + Bg.” Therefore, for blacks, the estimated effects of being in
one of the occupational categories included in Tabie 4.4 rather than the
upper white-collar reference category are constructed by summing
appropriate pairs of coefficients.

As we can see from Table 4.4, the earnings disadvantage associated
with not being an upper white-collar worker appears much smaller for
blacks than for whites. In contrast to the occupational differences
reported for whites, the smallest difference for blacks is between upper
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white-collar and skilled blue-collar workers rather than between cate-
gories of white-collar workers. In fact, among blacks, the net difference
in income between upper and lower white-collar workers is approxi-
mately the same as the difference between uppet white-collar workers
and laborers. However, these estimates of the net occupational differ-
ences in predicted income for blacks are based only on the regression
coefficients. Do inference tests give us confidence in these estimated
differences, or ¢an they be largely attributed to sampling error?

The ¢ tests for the coefficients of the product terms in Table 4.2 told
us that the income gaps between specified occupational groups and
upper white-collar workers wWere significantly different for blacks and
whites in all but the lower white-collar/upper white-collar contrast. But
we have as yet made no direct test of whether there are significant
occupational differences in earnings among blacks. The required ? test
is one that assesses the sum of two coefficients relative to the standard
deviation of the sampling distribution of this statistic, for example, (B2
+ Bo)/SE(B2 + Bo). The following formula, similar to the one prcsented
in Equation 3.1, serves the purpose:

=B+ B, /Ivar(B) + var(By) + 2cov(B, Bjk)]”z ) {4.51

Here, as in Equations 4.1 through 4.4, B; refers to a coefficient for an
occupation dummy variable referencing category j.and Bji refers to the
coefficient for a product variable between the kth independent variable
(in this exampie, BLACK) and the occupation dummy variable refer-
encing category j. The ¢ tests reported in the column for blacks in Table
4.4 were calculated by substituting into Equation 4.5. None of the
reported ¢ values exceeds the critical values of £1.96. The conclusion
we would draw from these results is that, although occupational loca-
tion has a significant effect (net of education and job tenure) on the
expected earnings level for workers who are white, occupation does not
reliably improve prediction of average income among blacks.

At this point, let us retuin to Figure 3.1. We began this chapter by
hypothesizing that the effect of occupation varies by race. In terms of
the figure, we proposed that the race differences in intercepts would not
be the same across all occupational categories. The model we estimated
1o examine this hypothesis allowed us to conclude that, in fact, we were
correct: Income differences between occupational groups were not of
the same magnitude for black and white workers. A comparison of
Figure 4.1 with Figure 3.1 should make that point clear.
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Figure 4.1. Results of Model 5

As additional illustration, Table 4.5 contains estimated intercept
values for each of the 12 subgroups depicted in Figures 3.1 and 4.1. The
two columns on the left provide the intercepts calculated using esti-
mates from Model 4 (those illustrated in Figure 3.1) and the two
columns on the right provide the intercepts calculated using estimates
from Model 5 (those illustrated in Figure 4.1). Because of the differen-
tial effect of race across occupational groups, the intercepts from Model
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TABLE 4.5
Differential Intercepts by Race and Occupation

Model 4 Model 5

Whites Blacks Whites Blacks
Upper white-collar 5,761.1 4,573.0 5,794.8 2,001.5
Lower white-collar 3,445.0 2.256.9 3,519.9 1,227.8
Skiiled 34174 2,225.3 3,176.4 1,909.3
Operative 2,594.5 1,406.4 2,367.6 1,559.1
Service 1,842.6 654.5 1,281.4 1,016.1
Laborer 2,154.3 966.2 1,592.0 1,182.6

5 not only modify the distance between subgroups, they reorder the
subgroups along the Y axis. (Keep in mind that these values reflect
predicted INCOME for workers in the various race-by-occupation sub-
groups who have zero years of schooling and zeso years of tenure.)

For example, in Figure 3.1 the vertical distance between the upper

white-collar and the skilled craftsmen lines is the same for whites and
blacks. For both groups, the skilled craftsmen line is displaced $2,344
below the upper white-collar line. This value, $2,344, is the coefficient for
OCC; reported in Table 3.3 and estimates the average effect of being a
craftsman rather than a professional on yearly earnings. However, in Figure
4.1, this same comparison of upper white-collar and skilled craftsmen
categories illustrates the race-specific effects of occupation. For whites,
the vertical distance between the two lines is $2,418; for blacks the distance
is only $92. These values are directly obtained from Table 4.4, which is
based on the regression results for Model 5 reported in Table 4.2.
Although the spacing of the intercepts differs from Figure 3.1 to Figure
4.1, in both cases the partial slopes for education and job tenure are the
same across all subgroups: All solid lines continue to be paraliel, indicating
the average effect of education across all respondents; all broken lines
continue to be paralie!, indicating the average effect of job tenure. The last
model to be developed in this chapter calls this point into question: Should
the partial effects of education and tenure be the same for ali subgroups?
We can hypothesize race-specific effects for education and job tenure and
then test to see if the effects of education and job tenure are the same for
blacks and whites. Even if we find that the dividend for additional years
of education or job tenure is different for blacks and whites, some lines
will continue to be parallel. Because six sets of lines are for blacks (one

I ]
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for each occupational group) and six sets of lines are for whites (one
for each occupational group), finding differential effects of education
by race would argue only that all solid lines for black workers would
be parallel to each other, and all solid lines for white workers would be
parallel to each other, though at a different slope than the solid lines for
blacks.? A similar situation would exist for job tenure.

To test the hypotheses that Bepuciwhites) = BEDUC(bIacks) a1 PTENURE(whites)
= BTENURE®lacks)» W€ construct a model that allows us to estimate the
difference in effects for whites and blacks. By adding two additional
terms to Model 5, we can accomplish this task. Because we are testing
the variability of relationships, we again utilize product terms. In this
case, the product terms are created by multiplying EDUC by BLACK
to make BLEDUC and TENURE by BLACK to make BLTEN. For
blacks in the sample, the distribution of BLEDUC will be the same as
the distribution for EDUC; however, whites in the sample will all be
coded 0 on BLEDUC. The same applies to the distributions of BLTEN
and TENURE. The model to be estimated is as follows:

Model 6: Y, = f(race, occ, educ, tenure)
=B, + p,BLACK + B,0CC, + B;OCC; + B,OCC,
+ BSOCC5 + B,0CC, + B,EDUC + B, TENURE
+ B,BLOCC, + B,,BLOCC, + §,,BLOCC,
+ BLZBLOCCS + B,3BLOCC, + B, ,BLEDUC
+ BsBLTENURE + u;

Regression results for this model appear in Table 4.6. With the excep-
tion of EDUC and TENURE, the interpretation of the coefficients for
variables included in Model 5 remain essentially the same in Model 6,
with one qualification: We now assess these effects controlling for the
differential impact of education and job tenure by race in addition to
the other independent variables,

Although the coefficient estimates and significance tests for many of
these variables remain largely unchanged, we note some differences be-
tween the regression results for Models 5 and 6. In particular, the coeffi-
cient for the dummy variable BLACK has been reduced by more than half,
and it is no longer significant at the .05 level or better. In addition, the
coefficient for the interaction term BLOCC; is noticeably smaller and only
marginally significant. How can we explain these changes in results?

To answer that question we must look at the two “new” variablés we
added to the model—the interaction terms for education and job tenure.
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TABLE 4.6
Regression Resuits for Model 6
Effects for Blacks®
Constant 49625
(435.9)
Black -1,667.3
(901.3)
0CC, -2,155.4 ~1,068.8
(281.7) (779.5)
QCC; -2,167.9 - 7184
{242.5) {703.4)
oce, ~3,132.1 ~1,144.5
(268.8) (672.7)
0CCs ~4,281.2 -1,605.1
(378.9) (703.4)
OCCy ~3,851.3 -1611.5
4110 {(703.7)
EDUC 359.1 186.3
(29.4) (37.3)
TENURE 86.3 94.6
(7.6} {13.1)
BLOCC, 1,086.5
(829.0)
BLOCC, 1,449.5
(744.4)
BLOCC, 1,987.6
(724.1)
BLOCC 2.676.1
{799.5)
BLOCC, 2,238.7
{815.2)
BLEDUC ~172.7
{47.5)
BLTEN 14.2
(15.2)
R .32434
F 102.25
&* change from Model § 00296
F ¢hange 7.01%%*

NOTES: Regression coefficients with standard errors (in parentheses).

a. Entries forblacks were calculated by summing coefficients; standard errors were calculated as {var(8;)
+ var(B;) + 2cov(B; Bp¥L

*rxCoefficient is statistically significant at the .0G1 level.
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The coefficient for BLTENURE is nonsignificant, suggesting that ad-
ditional tenure with the same employer “pays” black and white workers
about equally. Under this new specification, the interpretation of the
coefficient for TENURE is modified in the same way that the interpre-
tation of the coefficients for OCC, through OCCg was modified when
we moved from Model 4 to Model 5 and first introduced product terms.
Here, the coefficient for TENURE estimates the effect of additional
years with the same employer for white workers at $80.30 per year. The
coefficient for BLTENURE estimates the difference between the net
effect of job tenure for blacks and whites to be $14.20, making each
additional year worth $94.50 for black workers. However, the size of
the standard error for BLTENURE indicates that evidence of this dif-
ference in effect is weak. Therefore, we are led to the conclusion that
tenure operates in ronghly the same way for whites and blacks.

The situation with education is different. The coefficient for EDUC
tells us that, controlling for the effects of other variables in the model,
each additional year of education is associated with $359.10 in addi-
tional income for whites. The coefficient for BLEDUC indicates that
for blacks, each additional year of schooling pays $172.70 less than
that, or $186.40. The significance test for BLEDUC labels this differ-
ence statistically significant: In the population, an additional year of
education was associated with a smaller average increment to income
for blacks than for whites, net of other variables in the equation.
Because the net effect of education does differ for blacks and whites,
the estimated effect for education in Model 5 (the average effect of
education for blacks and whites) underestimates the return on additional
years of schooling for whites and overestimates the effect for biacks.

We can ask of these effects the same questions that we asked when
we were addressing occupation-by-race interaction terms. Specifically,
we know now that the net effect of tenure for blacks is not significantly
different from the net effect of tenure for whites, but that the net effect
of education is different for blacks. We do not know whether education
significantly affects the expected level of income for blacks. To answer
this question, we must return to Equation 4.4 and test the sum of the
coefficients estimating the effect of education for blacks. Substituting
into Equation 4.4, we find

t=359.1 + (~172.7)/[(862.691) + (2,253.569) + 2(-862.691)}"*
= 186.4/37.29 = 5.00.
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Figure 4.2. Results of Model 6

We can conclude that education does affect expected income for both
whites and blacks; however, black workers average a lower rate of
return on education than do white workers.

In response to our earlier question—How can we account for the shift
in the effects of BLACK and BLOCC;?—we can offer the foliowing
explanation. When we constrained the net effect of education on IN-
COME 1o be the same for whites and blacks (as we did in Model 5), the
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coefficient for BLACK indicated that, among upper white-collar work-
ers, blacks were at a significant earnings disadvantage; on average,
upper white-collar workers who were black earned almost $4,000 less
per year than upper white-collar workers who were white, controlling
for other variables in the equation. Similarly, the net difference in
expected INCOME for skilled workers and upper white-collar workers
was much larger for whites ($2,418.40) than for blacks ($92.20). Both
of these findings are reflected in Figure 4.1. However, once we estimate
race-specific effects for education (as we do in Model 6), we find that,
among upper white-collar workers, the net difference in expected IN-
COME between blacks and whites is nonsignificant at the standard .05
level for a two-tailed test. Although the standard error for the coefficient
for BLACK has increased from Medel 5 to Model 6, the more important
change is in the point estimate for the coefficient itself; the coefficient
in Model 6 is less than half the size of the coefficient in Model 5. This
reduction in size is reflected in the smaller gap between the ¥ intercepts
for black versus white upper white-collar workers in Figure 4.2. But as
we move across the horizontal axis to higher leveis of education, the
gap between solid lines for black versus white upper white-collar
workers widens, suggesting that the relative earnings advantage of
white upper white-collar workers over black upper white-collar workers
increases with the level of education. For example, what was a differ-
ence of $1,667 (at zero years of education and job tenure, an unlikely
set of values for upper white-collar workers) becomes an average
difference of $4,430 for upper white-collar workers with 16 years of
education.

Turning our attention to BLLOCC;, we find that the coefficient for
BLOCC; in Model 6 is smaller than the coefficient reported for BLOCC;
in Model 5; as a result, we can no longer reject the null hypothesis that
the net effect of being a skilled worker rather than an upper white-collar
worker is the same for blacks and whites, once we control for other
factors in the model in general and the race-specific effect of education
in particular. One thing we learn in the comparison of results for Models
5 and 6 is that the net difference in expected INCOME between upper
white-collar whites and blacks was partially attributable to the fact that
attaining a higher level of education did not produce the same income
dividend for blacks as it did for whites. Once we allow for this differ-
ence in the process of income determination {i.e., once we allow the
increment io expected INCOME associated with additional schooling
to be smaller for blacks than for whites), we provide one possible
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explanation for why upper white-collar workers who were black had
Jower expected INCOME than upper white-collar workers who were
white: Their additional education was valued at a lower rate of return. We
do not invalidate the initial observation that upper white-collar blacks were
at an income disadvantage relative to upper white-collar whites. Instead,
the results from Model 6 suggest one mechanism involved in producing
that disadvantage. In addition, we learn that, among skilled workers, what
initially appeared as a racial difference in the effect of being skilled versus
upper white-collar is, in part, a function of the differential retumns 0
education that accrue to whites and blacks.

Separate Subgroup Regressions

Starting with an observed difference in expected INCOME between
two groups——older black workers and older white workers—we have
now worked through a series of models in which we added controls for
occupation, education, and tenure, Further, we expanded the model
specification to include tests for the differential effects of these addi-
tional variables for black and white workers. This last step may lead the
reader to wonder why we chose to estimate a model such as Model 6 on
the full sample (allowing the effects of all independent variables to
differ by subgroup) rather than estimate separate regressions within
subgroups. Why not simply split the sample into black workers and
white workers, then estimate for each subgroup a model that predicts
INCOME as a linear function of occupational category dummy vari-
ables, education and job tenure? In fact, these are equivalent approaches,
provided one uses the appropriate statistical procedures for hypothesis
testing and the standard OLS assumptions are met.

In developing the full-sample model with interaction effects, we
noted six major points:

1. In the absence of specified product terms (interaction effects), the coeffi-
cients for independent variables reported “gverage” effects or, when other
independent variables were included in the specification, “average” partial
effects,

2. By expandingthe specificationto include product terms {thereby removing
the constraint of equivalent effects across alj groups), we could compare
the R? values from the two specifications and determine whether relaxing
the constraint of equal subgroup effects resulted in a significant improve-
ment in the fit of the modek: If the increment to R? resulting from the
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inclusion of product terms was sufficiently large (in statistical terms), we
could reject the null hypothesis that effects were equal across subgroups.

3. Once we estimated Model 6 on the full sample, we identified the 1 tests
associated with the coefficients for OCCz through OCCs as tests of the net
occupation effects for white workers and the ¢ test associated with the
coefficient for BLACK as atest of the net effect of being African American
on expected INCOME for upper white-collar workers.

4. In order to test whether the effect of an independent variable was signifi-

cant for the black workers, it was necessary lo construct a ¢ test for the sum

of two coefficients.

In order to test whether the effects of two independent variables were

significantly different from each other {e.g., to test whether operatives

were different from service workers), it was necessary to construct a f test
for the difference between two coefficients.

6. By examining the 1 tests for the product terms, we could determine whether
the effects of explanatory variables differed by race.

tn

By estimating separate regressions within the subgroups (e.g., one
regression for black workers and a second regression for white work-
ers), we automatically estimate group-specific effects. In other words,
for each group we know whether a given independent variable has a
significant effect, thereby obviating the need for the procedure outlined
in point 4 above. However, if the purpose of estimating separate sub-
group regressions is to assess the significance of group differences in
effects, an actual test for the difference in effects is needed.

In the absence of an explicit test, researchers can fall into two traps.
Imagine, for example, an analysis that predicts political activism as a
function of age. Suppose we expected the relationship between age and
political activism to differ by level of education; specifically, suppose
we hypothesized that the relationship between age and political activ-
ism would differ for coliege graduates compared with those without
college degrees. Suppose also that we have random samples of 500
respondents in each group. If separate regressions were estimated within
these two educational groups, we might find an apparent “difference”
between the estimated effects for age. For example, suppose the age
effect for college graduates is estimated to be —. 16 and the age effect
for non-college graduates is —.32. Can we argue that the effect for
college graduates is smaller than the effect for those with less formal
schooling simply because the estimated coefficient for college gradu-
ates is half the size of the other? Most readers will recognize the risk in
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this statement, If the purpose of the research is to generalize from sample
to population, it is always necessary 10 couple consideration of a point
estimate with the error associated with that estimate. When evaluating the
importance of the effect of an independent variable in a regression model,
it is not simply the magnitude of the coefficient that matiers, it is the
magnitude of the coefficient relative to its standard error. The situation is
the same when making statements about the relative magnitude of effects,
that is, whether the effects are equal of unequal. The magnitude of the
difference in coefficients must be evaluated relative to the standard error
of the difference. In this case, then, we have too little information to be
able to say anything about the relative effect of age on political activism
for different educational groups.

With that in mind, let us suppose that, in addition to coefficient
estimates, we know the standard errors of these estimates: The -.16
coefficient has a standard error of .11 and the coefficient of —.32 has a
standard error of .14. With this additional information, we can see that
the effect is not significant at conventional alpha levels for the college
graduate group, but the coefficient is significant at the .05 level for the
nondegree gmup.10 With this additional information, can we now claim
that the effect of age is StroRger for the nondegree group than for the
group with college degrees? Again, the answer is no. Although we may
have established that age is a significant predictor of political activism
in the nondegree group only, we have performed no inferential test for
the difference in effects. If the research question asks whether the two
effects are equal——that is, Ho: Bea = Prnee = 0 (where Bcg 18 the effect
of age for college graduates and Pncg is the effect for nongraduates)-—
then it is not the significance of Beg or of Brea Pet ge that is relevant
to our null hypothesis of no difference in effect between Zroups. The
appropriate estimate is {Bcg — Bnec). The magnitude of this statistic
must be evaluated relative 10 the standard errof of (Beo — Bneo)-
Equation 4.5 provides 2 formula for this test when coefficient estimates aré
from a single equation. When coefficients are estimated from separate
regressions, however, the definition of the test is somewhat different.

To illustrate these issues, let us return to our earnings data. We can
run separate subgroup regression for older white workers and older
black workers and obtain the resuits reported in Table 4.7, Because the
regression coefficients were estimated on separate samples, the esti-
mated effects (the Bs) are necessarily uncorrelated; that is, the covari-
ance of the estimates is zero. Therefore, it might seem that the formula
for the standard error should reduce to the square root of the sum of the
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TABLE 4.7
Resuits for Separate Subgroup Regressions

Blacks Whites
Constant 3,295.2 4,962.5
(416.0) (494.9)
0Ce, ~1,068.8 ~2,155.4
“@11.2) (319.8)
0CC, ~718.4 -2,167.9
G7LY (275.%)
0ce, w1,144.5 -3,132.1
(354.9) (305.2)
OCCs ~1,605.1 -4,281.2
(371.3) (430.2)
0CCs -1,611.5 -3,851.3
(371.3) (466.6)
EDUC 186.3 359.1
(19.7) (33.3)
TENURE 94.5 80.3
6.9) (8.6)
N4 31887 .24450
F 61.06 105.50
RSS/n—k- 1) 4,046,652.4 18,754,709.2
N 921 2,290

NOTE: Regression coefficients with standard errors (in parentheses).

variances. However, the variances of these separate subgroup coeffi-
cients are based, in part, on separate subgroup estimates of the popula-
tion variance. Each of the two estimates of the population variance is
based on only “part” of the sample and therefore uses different pieces
of the residual sum of squares. This means we must calculate a pooled
estimate of the popuiation variance that combines information from the
two groups (Kmenta, 1986). Further, as the subgroups may be of
different size (we have more than twice as many whites as blacks), this
pooled estimate must weight each subgroup estimate by appropriate
degrees of freedom (Long & Miethe, 1988).

Assuming equality of group variances (i.e., homogeneity of vari-
ance), the formula for the pooled estimate of the population variance is

s (n, — ky — Ds? +(m, — ky — 1)53 [4.6]
Fpooted™ N=(k +k+2) ’
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where ny and np are the number of cases in the subgroups, N = ny + /12, ky
and k; are the number of independent variables inciuded in each subgroup
regression, and s% and s% arethe mean residual sums of squares from their
respective subgroup regrcssions.i2 The appropriate { test for the difference
in coefficients from separate subgroup regressions is

B,- B, o)
I/y
2 2

Spoole Pf+ 2
5y 52

where s%l and s%z are the variances of the estimates B) apd By, and
st and s are as before. By performing the above t test, we can
reproduce the { test for the product (interaction) tefm in the full-sample
regression model.

For example, using the results reported in Table 4.7, we can test
whether the effect of education is the same for blacks and whites by
substituting into Equations 4.6 and 4.7. Calculating the pooled estimate

of the population variance, we have

L (921-8)(4,046,657) +(2,290- 8)(18,754,709)
S pooted~ 31211-16

=14,551,750.

Substituting into the -test formula, we find

- 186.3-359.1
- 2
1868 11089
3’814‘7(4,046,652+ 18,754,‘709}
72
=475
~3.6.

A comparison of the aumerator and denominator of this ¢ statistic with
the coefficient and standard error for BLEDUC as reported in Table 4.6
makes clear the equivalence of the two procedures.
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However, in developing this equivalence we have simply substituted
into the appropriate equations (Equations 4.6 and 4,7) without checking
to see if the assumptions underlying this ¢ test have been met. In fact,
until now the entire discussion has neglected the question of whether
the OLS assumptions have been met. While formulating a general
understanding of the interpretation of coefficients for regressors involv-
ing binary-coded dummy variables, we have been proceeding as if the
OLS assumptions were never problematic. It is time to correct that
deficiency. Indeed, our current emphasis on inferential tests requires
that we examine these assumptions more closely. In particular, given
the nature of the present example, we need to test for homogeneity of
variance {(or homoscedasticity) before we draw any conclusions about
differential effects from either the full sample or the separate subgroup
regressions.

Although it is always important to test whether OLS assumptions
have been met, a careful comparison of results reported in Table 4.7 to
those reported in Table 4.6 strongly suggests that we have a problem.
The significance tests for the net effects of occupation among blacks
{based on the full sample estimation of Model 6) that were reported in
Table 4.6 are not reproduced when separate subgroup regressions are
estimated; the estimated regression coefficients are the same, but the
standard errors are notably different. When separate subgroup regres-
sions are estimated, the standard errors for blacks are smaller than those
reported in Table 4.6, and the standard errors for whites are larger than
those reported in Table 4.6. How can we account for this inconsistency?

Dealing With Heteroscedasticity

We have been developing models based on our underlying hypotheses
that both the level of earnings and the structure of earnings determinants
differ by race. In other words, we began by identifying a gross differ-
ence in the level of earnings for blacks and whites, and then proceeded
to address the question of differential effects for explanatory variables
such as the occupation dummy variables, education, and job tenure by
specifying interaction terms. However, these tests are potentially prob-
lematic, because they assume that the variances of the two groups are
the same.

Although the estimates of the regression coefficients obtained from
Model 6 using the full sample are identical to those obtained from the
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estimation of separate subgroup regressions, the estimate of the popu-
lation variance, RSS/(N — k — 1), obtained from the full sample regres-
sion will approximate the pooled estimate derived from the separate
subgroup regressions only if the assumption of homoscedasticity (equal
subgroup variance) is met. When substituting into Equation 4.6, the
difference in subgroup estimates of the population variance became
evident. Mean residual sums of squares from the subgroup regression
for blacks was 4,046,652 the comparable value for whites was 18,754,709.
The full sample estimate from Model 6 (14,551,750) utilizes all obser-
vations. It is based on more information than either of the separate
subgroup estimates, because cach subgroup estimate uses only a portion
of the observations (in this case, only the 921 blacks or the 2,290
whites). But this estimate from the full sample is an unbiased estimate
of the population variance only if we can assume that the variance of
is constant across values of Xi; (i.e., in this case, across subgroups). Is
the assumption that the variance of u; does not differ by group valid in
this case? To answer that question, we must look more closely at our
results,

The assumption of homoscedasticity, or equal variance, states that
the variance of the disturbance term conditional on particular values of
the independent variables is a constant, o2, In research problems that
involve the comparison of groups, testing for heteroscedasticity (the
violation of the assumption) is necessary. Many tests for heteroscedas-
ticity require that the researcher examine the squared residuals from an
OLS estimation {the }). Basic statistical texts provide a more extensive
discussion of this problem and of the testing procedures available (e.g.,
Gujarati, 1988; Johnston, 1984). This discussion will be limited to two
tests and a discussion specific to our concerns. '

in this example, we hypothesize that the size of the variance is a
function of race, that is, that the variance is not equal across racial
subgroups. A straightforward test would be to compare the mean resid-
ual sums of squares derived from the separate subgroup regressions for
whites and blacks. If we have homogeneity of variance, then the error
variance around the estimated regression planes should be equal for the
two groups. We can thus posit as the null hypothesis that these variances
are equal—that is, He: o} = ¢} —and use the mean residual sums of
squares as our estimates of these parameters. If we construct a ratio of
the larger variance to the smaller, then that ratio should equal 1 if the
variances are equal; as the ratio departs from 1, the assumption of equal
variances becomes less tenable. If »; are assumed to be normally distrib-
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uted and if the assumption of homoscedasticity is valid, the ratio of the
variances follows the F distribution. Therefore, we can construct the
following test statistic:

. RSS,/n, —k,— 1 (4.8]
"l —kl- t‘"l_kl—l - RSS:/”Z "‘kz hd l '

where the numerator is the larger of the two error variances from the
separate subgroup regressions and the denominator is the comparable
value from the group with the smaller variance. In this case, k) and k3
(the number of independent variables included in each regression) will
be the same, because the specification is the same. From the quantities
reported in Table 4.7, we have

Fo13.205 = 18.754,709.2/4,046,652.4 = 4.63,

For subgroups this large, an F value of 4.63 is significant at the .001
level, requiring us to reject the null hypothesis of equal variance
(homoscedasticity) in favor of unequal subgroup variances (heteroscedas-
ticity). The coefficient estimates from the full sample estimation of
Model 6 are still unbiased; however, under heteroscedasticity ¢ tests are
inaccurate. Under conditions of heterogeneity of variance between
subgroups, addressing the question of differential subgroup effects for
explanatory variables is much more complicated, because the inferen-
tial tests for differences in effects are ambiguous: It is unclear whether
the test results are caused by a difference in group effects, a difference
in group variances, or both,

This general category of problem—testing the equality of normally
distributed means when the variances are unequal—is known as the
Behrens-Fisher problem (Amemiya, 1986, p. 36). A number of solutions
have been proposed (e.g., Goldfeld & Quandt, 1978; Kendall & Stuart,
1979, p. 159; Welch, 1938). These solutions rely on either some sort of
data transformation or reweighting scheme designed to negotiate the
problem of unequal variance or a recalculation of the distribution of the
test statistic to adjust for bias. In our example, however, the problem
may be somewhat easier to solve.

Initially, we proceeded on the basis of a conventional regression
specification, noted the possibility of alternative combinations of ex-
planatory variables that could be hypothesized, but never questioned
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the functional specification of the relationships we would be testing.
Although we have been using INCOME (measured as dollars earned
from wages and salary) as the dependent variable, the actual functional
specification we have employed may not be the most appropriate choice.
For example, if wages are distributed log-normally (an assertion sup-
ported by a sizable body of literature in economics), then our problem
of unequal variance may stem from an error in specification.

Interpreting Dummy Variables
in Semilogarithmic Equations

We routinely specify regression equations using the original metric
of both the dependent and independent variables. In following this
convention, we preserve the interpretation of regression coefficients
with which readers are most familiar: change in the expected value of
¥ per unit change in X. Occasionally, however, the functional specifi-
cation will call for a sransformation of the independent variables, the
dependent variable, or both. One of the most common transformations
encountered in the research literature is the logarithmic transformation,
a transformation that is particularly useful when the distributions of
variables are highly skewed.!? Though use of the log transformation is
routinely suggested as a remedial measure for dealing with hetero-
scedasticity (Gujarati, 1988: Maddala, 1992}, in this example, shifting
to a natural logarithmic transformation of earnings is also consistent
with a particular understanding of earnings distributions that argues that
the difference in an earnings level of $5,000 versus $10,000 does not
have the same meaning as a difference in an earnings level of $50,000
versus $55,000. In the original metric distribution of earnings, a differ-
ence of $5,000 carries the same meaning, regardless of where in the
distribution the increment is calculated; it is always simply an incre-
ment of $5,000. In contrast, viewing the $5,000 increment in propor-
tional terms, we see that increasing an income of $5,000 by an addi-
tional $5,000 represents an increment of 100%, whereas adding $5,000
to an earnings level of $50,000 represents an increment of only 10%.
To produce a proportionately equivalent effect at $50,000, we would
need to move to $100,000 (an increase of $50,000 or 100%). By using
the logarithmic transformation of earnings, we specify the relationships
between the independent variables and the dependent variables in
proportional terms. In a semilogarithmic model, only the dependent
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variable or the independent variables are log transformed; in this exam-
ple, we use the log transformation of the dependent varjable, earnings,
and leave the independent variables in their original metric.

We can define a semilogarithmic model of ¥ as follows:

Model 7: In(Y)) = f(race, occ, educ, tenure)
= B, + B,BLACK + B,0CC, + B,0CC, + B,0CC,
+ B,0CC; + B,O0CC, + B,EDUC
+ B;TENURE + §,BLOCC, + B,,BLOCC,
+ B,,BLOCC, + B,,BLOCC; + B,;BLOCC,
+ B,,BLEDUC + B,;BLTENURE + ;.

When X;; is a continuous measure, we interpret the regression coefficient
(e.g., Ps) as the relative change in Y for a given absolute change in X (e.g.,
the proportional change in INCOME for a one-year change in TENURE).
If we multiply g by 100, we then have the percentage change in INCOME
for an absolute change in X. For example, if Bg were .014, we would say
that predicted Y changes 1.4% for each additional year of job tenure.
Although this interpretation is valid when the independent variable is a
continuous measure, Halvorsen and Paimquist (1980) have shown that it
is not correct to interpret the coefficient of a dummy variable in this way.

Suppose X,; were a dummy variable instead of a continuous variable.
Because dummy variables utilize discrete codes (i.e., the values { and
1), we define no slope by the regression coefficient; therefore, we
cannot represent the coefficient of a dummy variable as the derivative
of the dependent variable with regard to the dummy variable. Further,
because the coefficient for the dummy variable captures the difference
in subgroup means between the designated group and the reference
group (in units of the dependent variable), when Y’ = In Y, the coeffi-
cient for the dummy variable in the semilogarithmic specification (By)
already expresses relative change in units of In Y. As Halvorsen and
Palmquist (1980) have shown, the coefficient of a dummy variable in a
semilogarithmic regression actually equals

A A
147, -7, [4.9]
TR

Y

ref

B,=in

S A
where Y is the predicted value of ¥ for the group coded 1 and Y is the
predicted value of Y for the reference group. In order to find the
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percentage effect of the dummy variable on Y (measured in the original
units of Y rather than relative to the log-transformed distribution), it is
necessary to use the inverse of the logarithmic fupction (i.e., the expo-
nential, or antilog, function). The percentage difference associated with
being in the group coded 1 rather than in the reference group is then
equal to

100{exp(B,) — 1}- [4.10}

Therefore, if the coefficient for a dummy variable (e.g., By, the coeffi-
cient for BLACK) is ~.632, we would find the antilog of —.632 1o the
base &, which is .5372, then subtract 1, for a value of —.468. The expected
value of ¥ for the designated group (in this case, blacks) is 468 (46.8%)
jower than the value for the reference group (in this case, whites).

Table 4.8 reports the results from the full sample estimation of Model
7 on the left; the right-hand columns report resuits from separate
subgroup regressions for blacks and whites.

Our first task is to see if we now meet the assumption of homogeneity
of variance. Substituting into Equation 4.8, we have

Fypsmmn ™ 277741.21983 = 1.263.

Given the computed F value, we fail to reject the null hypothesis of
equal variances and can therefore proceed with our assessment of
differential effects for blacks and whites.

Before summarizing the substantive results, let us compare findings
from the two regression formats reported in Table 4.8. First, we see that
the coefficient estimates from the two parts of the table are the same.
Further, we see that the standard errors calculated within the different
formats are very similar. Third, the inferential tests from the two
formats lead us to the same substantive conclusions. For whites, holding
an upper white-collar job provides a significant earnings advantage,
even when education and job tenure are controlled. Both education and
job tenure have significant positive net effects on expected earnings.
For blacks, being an upper white-collar worker does not provide the
same income advantage as it does for whites; in fact, controlling for
other factors in the model, upper white-collar workers earn significantly
more income than laborers, but remaining occupational differences are
not significant. The net effect of education on INCOME does not differ
for blacks and whites; however, the effect of job tenure is stronger for
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TABLE 4.8
LN(INCOME) on Explanatory Variables With Full Set of Interactions
Separate
Full Sample Regression Subgroup Regressions
General Model Blacks® Whites Blacks
Constant 8.353 8.353 7.720
(.056) {.054) {109
BLACK -.632
(.115)
OCC, —.244 -, 029 ~.244 -029
{036} {.099) (.035) (.108)
OCC, - 174 056 -.174 056
03n (.090) (.030) (09T
0CC, -.328 -.056 -.328 -.056
(.035) {.086) {.033) (003
0OCC, ~ 585 - 103 -.585 - 105
(.049) (.080) (.047) 097y
0OCCq -510 - 209 -.510 -.209
(.053) (.050) (.051) (.09
EDUC 049 043 048 043
(.004) (.005) (.004) (005}
TENURE 014 S 027 .014 027
(.001) (.002) (.001) (002
BLOCC, 215
(.106)
BLOCC, 230
(.095)
BLOCC, 272
(.093)
BLGCC;, A80
. (.102)
BLOCC, 301
{.104)
BLEDUC ~.006
{.006)
BLTEN 013
(.002)
Mean RSS 23654 21983 27174
I's 42489 32987 30082
NOTES: Regression coefficients with standard errors (in parentheses).
a. Entries for blacks were calenlated by summing coefficients; standard errors were calculated as {var(B;)
+ var(B)) + Zeov(B;, B
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blacks than for whites. The race-by-occupation interaction terms sug-
gest that the net effect of occupation does differ by race: occupational
differences in expected income are less pronounced among blacks.

We can summarize these results by saying that the net effect of being
black differs by occupation: Black upper white-collar workers are at a
significant income disadvantage relative to white upper white-collar
workers, and this advantage is maintained across ail hut one OcCupa-
tional category. Among service workers, the difference in expected
income between blacks and whites (controlling for differences in edu-
cation and job tenure) is not significant.

Testing for Heteroscedasticity
With Mere Than Two Groups

A number of formal tests for heteroscedasticity are available. For
example, the Goldfeld-Quandt test, appropriate when the number of
observations is not large, is used fairly routinely; however, it also
requires a division of observations into two groups (Goldfeld & Quandt,
1972; Gujarati, 1988). Another frequently cited detection procedure is
proposed by Glejser (1969), who suggests estimating a series of regres-
sions that specify led as a function of each independent variable in-
cluded in the mode! (for limitations, se¢, e.g., Gujarati, 1988: Maddala,
1992). In our example, we would calculate the € using results from
Model 6 and then regress le on BLACK. The F test for this equation
indicates whether the hypothesis that errors are homoscedastic should
be rejected. The extension from two groups to j groups requires that the
le;l be regressed on j— 1 dummy variables; the F test can again be
examined to determine whether the hypothesis of constant variance
ACTOSS Eroups should be rejected.

Tests for heteroscedasticity are performed as diagnostics on already
estimated regression models. Researchers interested in determining
whether they are likely to encounter this problem may prefer to test for
homogeneity of variance before initiating regression procedures. Re-
cent comparative studies of commonly used homogeneity of variance
tests indicate that there is considerable variation in the power and
robustness of these tests (Conover, Johnson, & Johnson, 1981 A
common limitation of these tests (6.8, Bartlett’s, 1937) is their sensi-
tivity to nonnormality. One of the tesis that performed well in these
comparative analyses was suggested by Levene (1960). As it happens,
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this test is similar in structure to Glejser’s tests for heteroscedasticity.
Levene suggests using one-way analysis of variance on the absolute
value of deviation scores; the robustness of the test is improved when
deviations around the median are substituted for deviations around the
mean. To perform this test, the researcher must initially calculate I¥; -
Y;l, where Y; refers to the median value for group j. Because one-way
analysis of variance is equivalent to performing 2 dummy variable
regression with j — 1 dummy variables, we would then estimate the
regression equation
W;-Yi=By+ B D +...+B D, +¢

and examine the F test for the equation to determine whether the null
hypothesis of homogeneity of variance should be rejected.

Methods for Making Multiple Comparisons
With Nonindependent Tests

By describing methods by which we can assess all possible group
differences, we have opened another topic worthy of some discussion—
the problem of multiple comparisons. This problem is one of the issues
of simultaneous statistical inference (Miller, 1966). In our context, the
probiem stems from making muitiple group comparisons from a single
set of estimates. The larger the number of comparisons we perform, the
more likely at least one of the comparisons will yield a “significant”
result. The proper way to generate significance tests for multiple com-
parisons continues to be a focus of considerable debate, Here, a brief
review is provided of two methods of dealing with the issue—the
Bonferroni method and Fisher’s protected t method (Darlington, 1990,
pp. 249-275).

In our example, we examined differences in expected income by
occupational group. The specification of upper white-collar worker as
the reference category meant that we would direcily estimate five
comparisons: Upper white-collar workers were compared with the re-
maining five categories of workers. However, we also introduced a ¢
test that allowed us to test the difference between estimated regression
coefficients. The number of possible comparisons is equal to j(j - 1),
where j represents the number of categories; however, when the order
of the comparison is irrelevant, the number of possible comparisons is
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reduced by half. For our six occupational groups, wWe could thereby
generate 15 possible pairwise comparisons. The techniques for address-
ing this issue depend on whether the possible comparisons can be
considered independent. In this example, the comparison of upper
white-collar to lower white-collar workers is not independent of the
comparison of upper white-collar to skifled workers because the chance
selection of particularly high-income upper white-collar workers would
affect both comparisons. The comparisons of upper white-collar to
lower white-collar workers and skilled workers o operatives are inde-
pendent (or orthogonal) comparisons; however, the significance tests
on these comparisons are not fully independent. Both comparisons use
the same estimate of the population variance, RSS/N ~ k — 1), in the
calculation of their standard errors; a chance fluctuation in this estimate
will affect the 7 values for both tests.

Ryan (1960) developed an application of the Bonferroni inequality
to ponindependent tests, proving that the Bonferroni formula provides
a stightly conservative estimate of the corrected significance ievel for
most sets of nonindependent tests. The purpose of the formula is to
produce a level of significance that has been corrected for the fact that
multiple comparisons are peing made. The Bonferroni approach ap-
proximates a corrected significance level (CSL) by multiplying the
aumber of results being tested (referred to as the Bonferroni Correction
Factor, or BCF) by the p value (the probability jevel associated with the
computed ¢ value)} for the most significant resuit. Therefore, if the most
significant of 15 resuits yields a p value of .003, then the corrected
significance level for this estimate is CSL = 15(.003) = 045, where 15
represents the BCF. If the object is then to assess the significance of the
coefficient with the next smallest p value, we would multiply the p value
of that coefficient by 14 rather than 15. This approach, referred to as
layering, would continue until the first nonsignificant result was found.

Dunn (1961) has shown that for two-tailed tests, the expression {1 —
(1 — CSLYPF] provides an upper limit for the corrected significance
level. However, whereas the Bonferroni estimate is sometimes t00
conservative, the Dunn alternative is sometimes 100 liberal. To get a
better sense of the behavior of the Bonferroni formuia, consider two
exireme cases {Darlington, 1990). In the first case, two lests are corre-
lated at —1. For example, if we perform two one-tailed tests on the
regression coefficient B; we would be testing two null hypotheses: that
By = 0 and that B: < 0. These tests are correlated at ~1 because rejection
of the first nuil hypothesis prectudes rejection of the second. Using the
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Bonferroni formula, we can say that the probability of being able to
reject at least one of these null hypotheses at the .025 level is not greater
than .03, that is, 2(.025). In this case, BCF(p value) is equal to the
corrected significance level .05, that is, the significance associated with
a single two-tailed test of the null hypothesis that B; = 0. Therefore,
under these circumstances, the Bonferroni formula is not conservative.

In contrast, consider the case in which tests are correlated at +1. If
we have a j-category variable and compare the first group to all others
one at a time, we generate j — 1 comparisons. This situation could occur
if we had a j-category qualitative measure and had included j — 1 dummy
variables in a regression model. If all nonreference groups have the
same mean value and infinite sample sizes, then the t value for all
comparisons with a reference group of finite size will be the same;
rejection of the null hypothesis in one case necessarily implies rejection
of the nuil hypotheses in all cases. In this situation, the corrected
significance level is equal to the observed p value. Therefore, had we
applied the Bonferroni formula, we would have overestimated the
corrected significance level. The inaccuracy of the Bonferroni formula
is therefore linked to the degree of correlation among tests. The higher
the positive correlation among tests, the more severe the error.

Fisher’s approach is much less conservative than the Bonferroni
method. With this approach, the researcher performs an initial F test to
test the composite null hypothesis that categories do not differ. If the F
test is significant, the researcher can proceed with any and all compar-
isons, because the ¢ tests involved in these comparisons are “protected”
by the significance of the initial F test. In our discussion of results from
the various models, our first step was to test the statistical significance
of the increment to R® accomplished by including a set of dummy
variables denoting a qualitative characteristic (e.g., the dummy vari-
ables for occupation) or a set of interaction terms (e.g., the race-by-
occupation product variables). After establishing the statistical signifi-
cance through the F test, we investigated other hypotheses. By following
this procedure, we were adopting Fisher’s approach to the issue of
multiple comparisons.
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5. ALTERNATIVE CODING SCHEMES
FOR DUMMY VARIABLES

Although thus far the presentation of dummy variables has assumed
binary coding and the designation of a single reference group, other
methods of coding dummy variables are available. Two alternatives to
binary coding are effects coding and contrast coding. Both methods
require that we use j — 1 dummy variables to represent a Jj-category
rominal variable, just as before.

Effects-Coded Dummy Variables

As mentioned in Chapter 2, some researchers prefer to define 2
middle category as reference group rather than one of the exireme
categories of an ordinal distribution. The choice is often defended as a
means of constructing group comparisons that mimic a contrast of
designated categories to an “average” value for the overall sample. If
one wants to contrast subgroups with a sample average, the interpretive
structure associated with effects coding is usually more convenient than
the interpretation based on binary coding.

To facilitate the comparison of dummy variables coded according to
these alternative techniques with binary-coded dummy variables, we
will continue with INCOME as the dependent variable and concentrate
on race and occupation as the nominal variables. Table 5.1 provides
examples of how we would utilize effects coding and contrast coding
of dummy variables to capture the information of race and cccupational
category. The top panel describes five dummy variables that have been
generated by effects coding. Upper white-collar workers has been
retained as the reference group; however, whereas the reference group
in binary-coded dummy variables is uniformly coded O, the reference
group in effects-coded dummy variables is always coded ~1. The group
contrast captured by each dummy variable is between the reference
group and the group coded 1. In this example, E; contrasts upper
white-collar and lower white-collar workers, E, contrasts upper white-
collar with skilled workers, E3 contrasts upper white-collar workers
with operatives, and so on. When the groups being contrasted are equal
in size, the zero-coded groups do not influence the comparison. How-
ever, when subgroup sizes are not equal (as is frequently the case), the
effect of zero-coded groups is present, though minimal; in fact, the
effect of the zero-coded groups increases as the mean value for all
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TABLE 5.1
Effects Coding and Contrast Coding of Dummy Variables
Effects Coding
Occupational Category E; Ey E3 Ey4 Es
Upper white-coltar -1 -1 -1 -1 -1
Lower white-collar i 0 ] 0 0
Skilled 0 i 0 0 0
Operative 0 ] i 0 G
Service 0 0 0 1 o
Laborer 0 0 0 0 1
Contrast Coding
< C2 Cs Cs Cs
Upper white-collar .5 1 ¢ 0 0
Lower white-coliar .5 -1 1] 0 0
Skilled —.25 0 5 1 0
Operative -25 0 5 ~1 0
Service -25 0 -5 0 ]
Laborer -.25 0 -.5 0 -1

zero-coded observations departs from the sample mean (Cohen & Cohen,
1983).

Table 5.2 reports zero-order correlations, means, and standard deviations
for the effects-coded dummy variables and income. In addition to the dummy
variables for occupational category, a dummy variable for race, ERACE, is
coded 1 if white, —1 if black. Whereas the mean values for binary-coded
dummy variables were equivalent to the proportion of cases in the designated
group (i.e., the category coded 1), the mean value for effects-coded dummy
variables indicates the discrepancy in category ns between the reference
group (coded —1} and the group coded 1. In fact, the mean value is simply
(nj ~ neee)/N. For example, E; codes 644 upper white-coliar workers —1; 337
lower white-collar workers 1; and the remainder of cases 0. Therefore, the
mean value of E; is (337 — 644)/3,211 = —.096. The negative sign indicates
that the reference group contains more observations than the group coded 1;
the magnitude indicates the size of this discrepancy relative to total sample
size. The set of mean values indicates that the number of upper white-collar
workers exceeds the number of lower white-collar workers, service workers,
and laborers; but the category of skilled craftsmen and that of operatives
each contains more observations than the upper white-collar category.
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TABLE 5.2
Means, Standard Deviations, and Correlations for Dummy Variables

Effects Coded Dummy Variables

Ei Ez Ea Ea Es Income

ERACE 132 057 «.231 -272 -.333 313
{000} (.001) (.000) {.000} (000} (.000)

E, .563 565 662 644 -270
{.000) {.000) {.000} (000 (.000)

E, 444 584 560 ~242
{.000) (.000) {000} {.000}

Es .586 562 -,354
(.000) (000) (.000)

E,4 660 -~.403
.000)} (.000}

Es —-420
(.000)

Mean -.096 0582 045 -1 -093  6,903.220
s.d. (.544) (671} {.666) 527 (.54 (4,629.954)

Contrast Coded Dummy Variables

Cy C2 C3 o Cs Income

CRACE 271 132 172 164 088 313
{.000) (.000) {(.000) {000} (000 (.000)

C, 265 -.257 - 006 027 396
.000) {.000) (.358) {063} {000}

Ca - 068 ~002 007 270
{.000} (.462) {.343) (.000)

Cs 009 068 056
.31 {.000) (.001}

Ca 000 105
(.491) (.000)

Cs 040
.012}

Mean -021 096 150 L0607 —018  6,903.220
s.d. {.346) (.544) (.389) (706} (.443) (4,629.954)

NOTE: Comelation coefficients with probability values (in parenthesish

The variance of an effects-coded dummy variable is a function of the
relative frequency of the two groups being contrasted, or pj + Prat — (P
- pref)z. Again, as illustration, the variance of Ej is & function of the
relative frequency of upper white-collar and lower white-collar work-
ers, such that s3, = 1050 +.2006 = (-.0956)* = .2965 and sg; = .344.
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The correlation coefficients of E; through Es with INCOME suggest
that the contrast is strongest (the means most divergent) for upper
white-collar workers and laborers (i.e., variable Es). However, because
the sample is not evenly divided across occupational and racial catego-
ries, interpretation of zero-order correlations remains ambiguous. Zero-
order correlations among the dummy variables themselves continue to
indicate relative group size. A correlation of .50 among effects-coded
dummy variables will occur only when all groups are the same size. A
zero-order correlation coefficient larger than .50 (e.g., the correlations
between E, and Es or E; and E;) occurs when the reference group contains
more cases than the other groups; when the reference group is small
relative to the other groups (e.g., rezg3), the coefficient falis below .50,

REGRESSION RESULTS

Although the difference in coding schemes yields numerically differ-
ent re§rcssion coefficients, the overall fit of the model (as indicated by
the R*) and the significance of the effects of race and occupational
category durnmy variables on INCOME (indicated by the F test for R
in Model 1 and the increment to R? test for Model 3 versus Model 1)
reproduce results reported for Models 1 and 3 in Chapter 3. The
different coding scheme affects the way the information is captured—
the manner in which group differences are arrayed—but it does not
effect the overall picture because the underlying structure of group
differences remains unchanged from earlier estimations; we simply
view it from a different angle.

Recall that in the case of binary-coded dummy variables the contrast
between the reference group and the designated group was achieved
only when other dummy variables in the set were controlied. In other
words, the subgroup contrast existed only as a partial effect. The
situation with effects-coded dummy variables is similar, though the
nature of the contrast changes, Here, the partial regression coefficient
for E,, controlling for E; through Es, produces a contrast between lower
white-collar workers and all groups in the sample. That makes the
quantity estimated by the partial regression coefficient the difference
between the expected value of income for group j and the unweighted
mean of the expected values for all subgroups, or

B, =Y, - XY /i,
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TABLE 5.3
Regression Resuits Using Alternative Coding Schemes

Effects Coding -Contrast Coding

Model 1 Model 3 Model 2 Model 3

Constant  6,220.5 6.277.8 6,567.7 6,751.5
(85.8) (83.2) (78.8) 88D

Race 1,601.4 838.0 838.0
{35.8) (86.2) (86.2)

E 853.5 (ot 5,247.6 6,443.8
(196.9) 2134 (260.3)

E; 129.2 s 1,510.6 2.842.1
(141.4) {131.2) (2711

Es ~908.9 C; 1,987.3 1,494.8
{140.9) (192.4) (196.3)

E4 ~1,817.1 C, 695.5 519.1
(211.4) (102.1) (102.3)

Es ~1,952.2 Cs 172.2 61.5
{200.6) (163.1) (611
R 09792 24624 22400 24624

F 148.3 174.4 185.0 174.4

NOTE: Regression coefficients with standard ervors {in parentheses).

where j is the number of categories on the original nominal measure and
the Y; (subgroup means) are summed across all subgroups. The unweighted
mean of all group means is also reported in the intercept, making it the
reference point from which all subgroup differences are calculated.

The unweighted mean of means and the overall sample mean are
different measures; whether they are indeed different numbers depends on
the variability in group means relative to group size. The general sample
mean can be considered a weighted mean of group means, because we can
arrive at the sample mean by multiplying each group mean by the number
of cases in that group, summing across all groups, and then dividing by
total sample size. In calculating the unweighted mean of means, each group
mean receives an equal “weight” (equal t0 1) regardless of the number of
cases in that group. One consequence is that group means based on a few
cases and measured imprecisely are treated the same as more precisely
estimated group means based on substantial group size; however, this
difference in precision will be reflected in the standard errors of the
coefficients. This procedure also makes the unstandardized regression
coefficients independent of relative group size.
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Consider the results from the first model reported in Table 5.3. The
effects-coded race variable (ERACE) is the only independent variable
specified; therefore, the intercept should be equal to the mean INCOME
for blacks plus the mean INCOME for whites, divided by two. Using
the values reperted in Table 2.2, the reader can verify that this is the
case. The value Bgrace = 1,601.4 is the difference between expected
INCOME for whites ($7,821) and the unweighted mean of means for
blacks and whites, that is, the intercept.

Modeti 3 includes both ERACE and the occupation dummy variables in
the specification; therefore, the regression coefficient for ERACE indi-
cates that, once differences in INCOME by occupational category have
been taken into account, there remains a positive income effect associated
with being white. Similarly, controlling for black/white differences in
INCOME, lower white-collar workers and skilled workers average higher
earnings income than the expected value of income across groups, with the
advantage for lower white-collar workers exceeding the advantage for
skilled workers. Operatives, service workers, and laborers are below the
average, with the INCOME disadvantage appearing greatest for service
workers and laborers. With effects-coded dummy variables, the partial
regression coefficients between INCOME and one of the dummy variables
for occupation, controlling for all other occupational dummy variables, can
therefore be interpreted as a measure of the “eccentricity” or the *unique-
ness” of the specified group (Cohen & Cohen, 1983). By squaring the
semipartial correlation coefficients, we assess the extent to which variation
in INCOME is explained by the distinctiveness of particular categories.

As was the case in previous chapters, we calculate the predicted
INCOME for each subgroup by multiplying the coefficient estimates
associated with the dummy variables by the values received by mem-
bers of that particular group. When dummy variables were binary
coded, this procedure amounted to adding the coefficients for dummy
variables designating a particular group and disregarding all coeffi-
cients for dummy variables on which zero codes had been assigned.
With effects-coded dummy variables, recall that the reference category
is coded ~1 on all dummy variables within a set; for instance, upper
white-collar workers were coded —~1 on all the occupational dummy
variables. Therefore, in order to calculate the predicted INCOME for a
white upper white-collar worker, we have the following:

Yywe = 6,277.8 + 838(1) + 853.5(-1) + 129.2(—1) - 908.9(—1)
- 1,817.1{~1) - 1,952.2(~1) = 10,811.3.



Similarly, to calculate the expected INCOME for black upper white-
collar workers, we would have essentially the same equation except the
coefficient for ERACE (838) would be multiplied by —1, fora predicted
{NCOME value of 9,135.3. By comparing the predicted INCOME
values generated from Model 3 in Table 5.3 with the predicted IN-
COME values generated from Model 3 in Table 3.2, the reader can
verify that the set of predicted values produced is the same, regardless
of the coding scheme used for the dummy variables. Therefore, the
major difference between effects-coded dummy variables and binary-
coded dummy variables lies in the way the reference point is defined.
Rather than assessing each group relative to a particular (and perhaps
arbitrarily chosen) reference group, effects coding compares each group
with the entire set of groups.

In spite of these apparent differences in interpretation, Suits (1983)
demonstrates that it is possible 10 shift interpretive frameworks by
adding a constant to estimated regression coefficients for binary-coded
dummy variables, thereby expressing the deviations of all subgroups
from an unweighted average across all subgroups. As an illustration,
consider the simplest case in which INCOME is regressed on a binary-
coded dummy variable for race—BLACK-—yielding the results re-
ported for Model 1 in Table 3.1:

Y, =7.8219 - 3,202.9(BLACK) + ¢;.

By adjusting the B; reported above by a constant value, ¢,we can
shift from the interpretation associated with binary-coded dummy vari-
ables (comparing each of the designated categories 10 the reference
category) o an interpretation consistent with effects-coded dummy
variables (comparing each category 1o the mean of the subgroup means).
We determine the value of ¢ such that 2B + ¢} = 0, where B; refers
to regression coefficients associated with binary-coded dummy vari-
ables: therefore, ¢ = —( Bylj, where j is the number of categories on
the qualitative measure. In this example, ¢ would equal ~{~3,202.9/2)
= 1,601.45. By adding c to all the dummy variable coefficients and
subtracting ¢ from the constant, we obtain

Y, = 6,220.45 ~ 1,601.45(BLACK) + 1,601.45(WHITE).

We can express a coefficient for WHITE even though the original
specification treated this category as the reference category; we simply
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assume that the “effect” of WHITE in the original specification was set
to zero.

When more than one qualitative variable is involved in the specifi-
cation, the adjustment is determined within sets of dummy variables.
For example, when INCOME is regressed on BLACK ard the occupa-
tion dammy variables, we obtain

Y, = 10,811.4 - 1,676(BLACK) ~ 2,842.1(0CC, ) - 3,566.4(0CCs)
- 4,604.5(0CC,) - 5,512.7(0CC;) ~ 5,647.8(0CC,) + e,.

The value of crack is determined as before; that is, cracg = ~(~1,676/2)
= 838. The value for coce is equal to —{(-2,842.1) + {-3,566.4) +
(—4,604.5) + (~5,512.7) + (-5,647.8))/6 = 3,695.58. We add cracg 10
the coefficients for the two categories on race (where the coefficient of
WHITE from the original specification was set to zero), we add cocc to
the coefficients for the six categories on occupation (where the coeffi-
cient for upper white-collar worker from the original specification was
set to zero), and we subtract crack and coce from the constant. We can
thereby express all the group effects relative to the unweighted average
across subgroups as

¥, = 6,277.8 - 838(BLACK) + 838(WHITE) + 3,695.6 (OCC,)
+ 853.5(0CC,) + 129.18(0CC;) — 908.9(0CC,)
~ 1,817.12(0CC;) — 1,952.2(0CC) + e,.

Contrast-Coded Dummy Variables

The bottom panel of Table 5.1 illustrates a set of contrast-coded
dummy variables. Through contrast coding, the researcher can specify
particular comparisons of interest, subject to three conditions: (a) Rep-
resentation of the j-category nominal scale requires that j — 1 contrasts
be specified, {b) the set of codes for any contrast-coded dummy variable
must sum to zero, and {¢) the codes for any two dummy variables must
be orthogonal. A general rule of thumb for producing contrast codes
requires that we initially organize the set of categories into two aggre-
gated groups.

In this example, a distinction can be made between white-collar and
blue-collar workers. C; defines this first contrast between all white-collar
workers and all blue-collar workers. Because two white-collar categories
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are to be combined, each category is coded .5; similarly, because the
blue-collar category combines four groups, each of these categories is
coded —.25; the negative sign “contrasts” blue-collar to white-collar
workers, whereas the .25 is 2 function of equally weighting four sub-
groups to produce the aggregate. The sum of these codes equals 1.
Remaining dummy variables define contrasts within this initial subdivi-
sion. C,. for example, contrasts the two members of the white-collar
category. Because each of these groups now stands alone, one group

_receives a code of 1; the second is coded —1. C3 contrasts gkilled craftsmen

and operatives with service workers and laborers. The former two groups
are coded .5; the latter two are coded —.5. C4 then defines the contrast
between skilled workers and operatives, and Cs the contrast between
service workers and taborers.!® We can test the independence of this set of
contrast codes by summing the products of successive pairs of codes. For
example, summing the products of codes for €, and C, we have (5H1) +
(.5)(~1) + (=250} + (~25)(0) + (=23)0) + (~-250 =0.

The bottom panel of Table 5.2 reports zero-order correlations, means,
and standard deviations for contrast-coded dummy variables defined in
Tabie 5.1. The means and standard deviations of contrast-coded vari-
ables are also a function of relative group sizes, but because the coding
scheme involves quantities less than 1, the relationship between these
frequencies and the mean values makes interpretation less useful.

As in previous examples, this set of dummy variables displays non-
zero correlations with other variables in the set, even though the codes
used to define the contrasts werc designed to be orthogonal. The con-
dition that the codes be orthogonal is not the same as requiring that the
variables themselves be orthogonal. The correlation among the con-
trast-coded dummy variables within a set is again a function of relative
group size. Only if observations had been equally divided across all
groups would the correlations be zero.!

Interpretation of the zero-order correlations between contrast-coded
dummy variables and income is also somewhat ambiguous. For Ca, Cs,
and Cj, the interpretation is essentiatly that of effects-coded durmnmy
variables, because for these three variables the contrast is captured by
codes of ~1 for one group, +1 fora second group, and 0 for remaining
groups. This coding operation is equivalent to the technique of effects
coding with one exception: In contrast-coded dummy variables, the ~1
code is not consistently applied to the same group. These correlations
therefore measure the extent to which the difference in average IN-
COME for the two groups receiving —1 or +1 codes accounts for the
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variation in INCOME; however, when group ns are unequal, the zero-
coded groups are also implied in this measure.

The interpretation of correlations involving dummy variables with
only two codes (such as C) is more straightforward. Because C; codes
white-collar workers .5 and blue-collar workers —.25, the squared zero-
otder correlation between income and C; measures the proportion of
the variance in income that is explained by the distinction between
white-collar workers and blue-collar workers. When other dummy vari-
ables are not held constant, the consequence of the coding scheme is to
produce weighted means of subgroup means. For example, because
upper and lower white-collar workers receive the same code, the value
of mean INCOME for white-collar workers that is relevant to this
zero-order relationship is the mean value of the aggregate, with sub-
group. membership ignored; in other words, the mean value for white-
collar workers is constructed as the value of INCOME summed across
all white-coliar workers (upper and lower alike) and then divided by the
total number of white-collar workers. In this sense, the zero-order
correlation involves the weighted mean of similarly coded group means,
because the value could be found by multiplying each subgroup mean
by the number of cases in the subgroup, summing across subgroups, and
dividing by the aggregate number of cases, However, it must be noted
that this interpretation is appropriate only when one is dealing with
zero-order correlations involving a contrast-coded dummy variable
with only two possible values. The general conclusion we can draw is
that, although contrast-coded dummy variables provide a useful alter-
native for summarizing regression results based on the entire set of
variables, simple descriptive statistics involving these dummy variables
taken one at a time are not particularly useful.

REGRESSION RESULTS

The results of the regression estimation for Models 2 and 3 are
reported in the left-hand columns of Table 5.3. Model 1 estimates were
not included because they are exactly the same as those reported for
effects-coded dummy variables. Once again, the values for R? and its F
test reported in Table 3.1 of Chapter 3 are reproduced, underscoring the
general equivalence of the three approaches in the multiple regression
analytic setting.

The partialing procedure involved in the regression estimation allows
a more straightforward interpretation of coefficients than we found with
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the bivariate measures, although some additional calculation is still
necessary. The interpretation of the intercept in this model is the same
as in the model with effects-coded dummy variables; it is the un-
weighted mean of all subgroup means, and it again provides the refer-
ence point for assessing group effects. Bach dummy variable specifies
a contrast between two groups or sets of groups. The partial regression
coefficient associated with that variable is a function of the difference
between unweighted means of means and the codes used to construct
the contrast; groups receiving zero codes are excluded from the com-
parison because of the partialing procedure.
Specifically, the group contrast (C;) is defined as

g+ Ny 5.1}

€= Bl g

where ng) is the number of groups included in the first subset, ngy is the
pumber of groups in the second subset, and B is the regression coeffi-
cient for the dummy variable. For example, the coefficient for € is a
function of the contrast between white-collar workers and blue-collar
workers. Substituting into Equation 5.1, we have

2+4
"2@)

C, =5,247. =5,247.6(.75) = 3,935.7.

Remaining contrasts can be calculated as follows:

C,=1,5106(2) = 3,021.2

C,=19873(H= 1,987.3

C,=6955(2)= 1,391.0
Co= 1722 (2) = 344.4

Using the group means reported in Table 2.2, the reader can verify that
each contrast does indeed reproduce the differences in group means or
unweighted means of group means.

The standard errors for the contrasts can be found by multiplying the
standard error for the coefficient by the same factor we used to weight the
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coefficient itself. For example, the standard error for the contrast of upper
white-collar workers to lower white-collar workers (Cy) is (137.2)(2) =
274.4. This value is the same as the value reported for OCC; in Model
2 of Table 3.1. The 1 tests associated with these coefficients allow us to
evaluate whether the contrasts defined by the dummy variable general-
ize to the population. In Model 2, for example, the coefficients for C,
through C; are all significant at better than the .001 level, but the
coefficient for Cs is not. We conclude that, in the population, the
unweighted average income for upper white-collar and lower white-
collar workers is higher than the unweighted mean of blue-collar groups;
wpper white-collar workers average higher income than lower white-
coliar workers; the unweighted average for skilled workers and oper-
atives exceeds that of service workers and laborers; and skilied workers
average higher incomes than operatives; but predicted income for la-
borers is not significantly different from the predicted income for
service workers.'’

When all other dummy variables are controlled, the squared semipar-
tial correlation coefficients report the proportion of sample variance in
Y explained by a particular contrast. The semipartials reported for
Model 2 in Table 5.3, for example, indicate that the largest proportion
of variance is accounted for by the contrast between white-collar and
blue-collar workers (i.e., .365° = 13.3%), However, surnming the squared
semipartial correlation coefficients will not produce the R? for the
equation because the C variables were themselves intercorrelated. Only
when all groups are equal in size will the contrast-coded dummy
variables be uncorrelated, and only when regressors are orthogonal will
the sum of the squared semipartial correlation coefficients equal R

6. SPECIAL TOPICS IN
THE USE OF DUMMY VARIABLES

Up to this point, we have been working with the same set of variables
from a single data set to investigate the interpretation of dummy vari-
ables within increasingly complicated specifications in order to illus-
trate the modeling flexibility that can accompany the use of dummy
variables. In addition to the types of hypotheses already outlined,
dummy variables have frequently been used in a variety of other
formats. In this chapter we will explore some additional ways to ntilize
durnmy variables in regression analysis.
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Dummy Variables in Logit Models

Researchers dealing with binary or polytomous dependent variables
have increasingly turned to logistic regression models. Because so
many research questions involve group differences, logistic regressions
with dummy variable regressors have also become common. Suppose,
for example, our dependent variable of interest is mortality and our
dummy independent variable is gender. The regression coefficient for
a dummy variable in a logit regression represents a gender-dependent
increment or decrement to the log-odds of dying. However, interpreting
a log-odds metric is not as intuitively appealing as interpreting 2 simple
odds ratio. Is it possible to shift from one framework to another? Yes;
by taking the antilog of the logit coefficients, we accomplish an arith-
metic translation of the additive effects (specified in the linear additive
model predicting the log-odds) to muttiplicative effects (in which the
dependent variable is a simple odds ratio) (Alba, 1988). The shift from
additive to multiplicative accompanies the shift from the log-odds to
the odds ratio itself, because the fogarithmic transformation allows us
to represent multiplicative relationships as additive.

To illustrate this technique, we will consider results from a model
predicting mortality among older women as a function of self-assessed
health and health risk factors, as reported by Idler and Kasl (1991). The
dependent variable is the log-odds of dying during the 4-year period;
the dependent variable, mortality, is coded 1 if the respondent died and
0 if the respondent survived. Subjective health status is treated as a set
of three dummy variables, with “excelient health” serving as a reference
group. Health status controls include cancer, diabetes, intermittent
claudication, and hypertension (each coded 1, if present), the number
of activities requiring help, the number of ADLs (activities for daily
living that the respondent cannot perform without assistance), an index
of body mass, age, and two dummy variables for being a present or past
smoker, with nonsmokers serving as the reference group. Results from
the logistic regression estimation are reported in Table 6.1; the antilogs
of the logit coefficients for dummy variables are included in the right-
hand column. Being in poor rather than excelient health increases the
log-odds of dying, controlling for other variables in the model. Alter-
natively, we can say that the odds of dying during the study period are
3.12 times higher for women in poor health compared with women in
excellent health, other things being equal. Similarly, controlling for
other factors, the odds of dying for women in fair health are 2.85 times
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TABLE 6.1
Dummy Variables in Logistic Regression

Logistic Regression Coefficients (B} Antilog (B}
Constant —6.308%**
Self-assessed health
poor (versus excetlent) 1.138# 3.12
fair {versus excellent) 1.047* 2.85
good (versus excellent) 0.862* 2.37
Diabetes (L9634 ** 2.62
ADL score 0.041
Activities 0.393*
intermittent claudication 0.982 2.67
Hypertension 0.369 1.45
Age 0.061**
Current smoker {versus not) 0.769*+* 2.16
Past smoker (versus not) -0.312 .73
Weight (kg)/height’ (m) ~0.076%+=

SOURCE: Adapted from Idier and Kas! (1991).
NOTE: *Coefficient significant at the 05 alpha level; **coefficient significant at the .01 alpha level;
***goefficient significant at the 001 alpha level.

higher, and for women in good health 2.37 times higher than the odds
experienced by women in excellent health. Further, the net effects of
smoking indicate that women who currently smoke face odds 2.16 times
those of nonsmoking women. For sample members, the odds of dying
for women who smoked in the past and then stopped are lower than the
odds experienced by nonsmokers (.73 times their risk), but the esti-
mated difference is nonsignificant.

The interpretation of coefficients for dummy variables in models
where the dependent variable is logged has now been discussed in two
places. In the first (the latter part of Chapter 4), the arithmetic transla-
tion of the coefficients allowed the reader to make an interpretation of
proportional {or percentage) difference. In this chapter, we develop an
interpretation of multiplicative effects. On the surface, the interpreta-
tion suggested for the coefficients associated with dummy variables in
the semilogarithmic models developed in Chapter 4 may appear differ-
ent from the interpretation developed for logit models. On the contrary,
these two interpretations are only slight variations on a common proce-
dure. In Equation 4,10, we defined the relative effect as the percentage
difference associated with the presence of a characteristic (indicated by
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a code of 1 on the dummy variable): For example, among whites, the
expected earnings for laborers were 40% less than the expected earnings
for upper white-collar workers (controlling for other variables in the
model). However, if we choose not to subtract 1 from the antilog of the
coefficient, we simply present the complementary view of this occupa-
tional difference in multiplicative terms: laborers earn only 60% of
what upper white-collar workers earn. Either way, the importance of
using the antilog transformation of estimated regression coefficients
associated with dummy variables to express relative effects remains the
key.

Testing for Curvilinearity

Dummy variables are commonly used to designate categories of
nominally coded independent variables. But we can also use dummy
variables to represent segments of the distribution of ordinal or interval
independent variables. For instance, if we suspect the presence of a
nonmonotonic or curvilinear relationship between dependent and inde-
pendent variables but have no good basis for predicting the particular
form of curvilinearity, dummy variable regression provides a useful
alternative to polynomial regression or the use of transformations. By
representing a quantitative independent variable with a series of dummy
variables, we cut the overall distribution into smaller pieces and then
test to see if the effects across the series of dummy variables suggesta
linear or a curvilinear relationship.

As an example using variables with which we are already familiar,
consider the relationship between income and education. Rather than
assuming that the effects of education are the same across the entire
range, we may speculate that the increment to earnings associated with
additional education depends on where in the overall distribution the
effect of an additional year of schooling is assessed. In order to test for
a curvilinear relationship between earnings and education, we would
estimate two models:

Model 6.1: ¥ = f(years of schooling) = By + B,EDUC + 4;

Model 6.2: ¥ = f(dummy variables for each grade completed)
= By + 2.B,ED;
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Figure 6.1. Test for Curvilinearity

In Model 6.1, education is entered as a quantitative independent vari-
able (EDUCQ). In Model 6.2, education is specified as a series of dummy
variables, denoted ED;, where EDy is coded 1 if the respondent had no
formal schooling, ED) is coded 1 if the respondent completed up to 1
year of schooling, and so on to ED,7, which is coded 1 if the respondent
completed 17 years of formal schooling; the reference category desig-
nates 18 years of formal schooling.
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Figure 6.1 illustrates results for these two models. A quick look at the
graph suggests that the relationship may be slightly curvilinear. The
differences in predicted earnings between successive groups are not
uniform across the range of education. The slope is shallower at low
levels of education, and appears somewhat steeper at higher levels of
education, especially after 12 years of schooling. The model with
dummy variables also explains slightly more variation in income than
the model with linear specification. Model 6.1 explains 19.6% of the
variance in earned income, whereas Model 6.2 explains 21.4% of the
variance. Testing whether the increment to explained variance accom-
plished by relaxing the linearity assumption is statistically significant
requires an F test of the following form (where the numerator degrees
of freedom for F are determined by the number of additional indepen-
dent variables in the dummy variable model, and the denominator
degrees of freedom are equal to the number of cases reduced by the
number of parameters estimated in the dummy variable model):

(B - RIY/(df, - dfy [6.1]
T -RYy/W-dty)

Applying this F test to the results for Models 6.1 and 6.2, we have

F _ (21390 - .19624)/(19~2) _ .00104
17,3192 (1-.21390)/3,192 .00025

4.16,

which is statistically significant when compared with a critical F value
of 2.65 at the .01 level.

If the independent variable is truly continuous in measurement, the
original variable must be recoded into discrete categories before it can be
represented as a series of dummy variables. When this is necessary, the
second model is somewhat different from the one noted in the text in that
the original (quantitative) independent variable is included in the specifi-~
cation along with the set of dummy variables. However, the formula for
the F test comparing the R? from the two equations remains the same.

Piecewise Linear Regression

Dummy variables can also allow us to model an abrupt shift in the
slope of a regression line. When the change in slope is gradual—that is,
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when the relationship between Y; and X|; increases or decreases in a
linear fashion with values on X2;—we can specify a product interaction
term to capture this moderating effect, When the shift in slope is abrupt,
however, we can use a dummy variable to help estimate the magnitude
and significance of this shift. One research situation in which this
technique is nseful occurs when we can identify a threshold value in the
distribution of our quantitative independent variable (X,), and we expect
the relationship between X; and Y; to differ on either side of that
threshold value. For example, salespeople in retail trade often receive
partial compensation from commissions that are graduated relative to
the volume of merchandise they sell. Similarly, the relationship be-
tween output and cost may depend on economies of scale that modify
the cost function at certain levels of cutput. Consider this latter context
for purposes of illustration. ‘

Suppose we have two distributions: The first distribution reports total
output; the second reports total cost of production. Suppose further that
we expect the cost per unit to drop when volume reaches 5,000. The
value 5,000 therefore represents our threshold value, X', In order to
estimate the shift in slope (cost per unit) that occurs at X = 5,000, we
first calculate the deviations of each output level from the threshold
value as (X; — X*). Then we define a dummy variable (D;) equal to 1 if
output exceeds the threshold of 5,000 and 0 otherwise. The model then
becomes

Model 6.3: ¥, = By + B,X, + By(X, - X")D, + ¢,

where B; estimates the slope for output levels less than 5,000 and (B,
+ B,) estimates the slope beyond output levels of 5,000. B; therefore
provides an estimate of the shift in slope and the ¢ test associated with
B, provides an inferential assessment of the significance of the esti-
mated shift.

To continue with our example, when we regress total cost on output,
we obtain the following results:

Y, = 143.798 + .1090UTPUT + ¢,
(27.455) (.006)

This equation explains 93.75% of the variance in Y; and suggests that,
as output increases I unit, total cost increase about 11 cents. In other
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words, the marginal cost per item is 10.9 cents. When we estimate a
piecewise regression model we find the following:

Y, = 87.059 + .1290UTPUT - .045(OUTPUT - OUTPUT')(DI.) + e,
(34.264) (010} (.018)

This equation explains 95% of the variance in total cost, a significant
increment of 1.25% over the previous model. In addition, we learn that
at output levels below 5,000, the marginal cost per unit is almost 13
cents; however, at volume above 5,000, the marginal unit cost drops to
8.4 cents (.129 — .045).

Dummy Variables in Time-Series Data

When data are cross-sectional, dummy variables provide a method of
estimating subgroup differences in the expected value of a dependent
variable. Under these circumstances, subgroups can be defined by
characteristics that we expect to be structuraily related to the distribu-
tion of the dependent variable. When data are arrayed in a time series,
dummy variables also allow us to group observations into categories;
however, in time-series data, the grouping is more likely to be defined
relative to key events. In time-series data, as in cross-sectional data,
dummy variables frequently serve as proxies for distributional mecha-
nisms that are difficult to measure and complicated to specify. Because
they are proxies, the interpretation of the mechanisms behind the ap-
parent difference is open to argument; but then the validity and inter-
pretation of any model specification can be a source a disagreement.

Dummy variables can be used in time-series regressions to capture
regional or subgroup differences. However, they can also be used to test
the structural stability of parameters and to construct seasonal indexes.
For example, researchers studying the growth in union membership in
the United States frequently view passage of the Wagner Act as central
to the development of unionism; investigations of the growth in military
expenditures find it necessary to adjust for the effects of war mobiliza-
tion; studies that attempt to model changes in the profitability of certain
investments may want 1o specify shifts in tax law as determining
factors. The impact of a key event can lead to a shift in the tread line
as well as a restructuring of the process.

As an example of the former, consider Carl Chen’s (1984) investiga-
tion of the impact of the Three Mile Island nuclear accident on the
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stability of the market model. His data consisted of weekly prices of 70
utility stocks for the first guarter of 1978 to the first quarter of 1980.
Because the stocks of nuclear companies declined sharply after the
incident, Chen wanted to test the stability of the market model by
comparing parameter estimates before versus after the accident. He
specified the following model:

Model 6.4: rj, = B}O + jirmf + uj?'

where 7;, i$ the weekly return on stock j at time ¢, 1y, is the market return
proxied by the Standard and Poor’s Index, and u;, is the random distur-
bance term.

The dummy variable technique for testing the stability of the inter-
cept (B;o) and the slope (B;,) requires that we divide the sample into two
subsample periods. In this case, we define a dummy variable, D = (), for
observations taken before the accident and set D = 1 for observations
taken after the accident (the week of the accident is omitted from
observation). The test model then becomes

Model 6.5: r; = ;0 + ;l ro+ ﬁ;zD + {5;3 TD+ u;,

where P, estimates the difference in intercept values between the two
periods and P;3 estimates the difference in the slope coefficient between
the two periods. Chen’s results for the subgroup of nuclear companies
{those with more than a 10% nuclear fuel mix by 1980) are as follows
{t values in parentheses):

r;=-.0022 - .0031D + .3553r, + .0614r,,D.
(1.43) (1.32) (4.13) (.50)

On the basis of these results, the null hypothesis of no structural change
cannot be rejected.

Dummy Variables and Autocorrelation

Consider a simple time-series model that predicts ¥, as a function of
X, and a dummy variable, D (coded ] to indicate the later of the two
periods), designed to estimate a process that spans two historical peri-
ods. A researcher interested in estimating both a shift in the level of ¥




84

and a shift in the process generating ¥ would want to estimate the
following model:

Y, =By + B,D + B,X, + B,DX, + ¢,

where B estimates the shift in the level from period 1 to period 2, By
estimates the effect of X during the first period, and B; estimates the
difference in the effect of X on Y between the second and first periods.

When estimating time-series regressions, the researcher must be
concerned about violating the assumption of no autocorrelation. If an
examination of residuals suggests that errors are correlated, OLS esti-
mators are inefficient. In dealing with the problem of autocorrelation,
researchers often assume that the disturbances are generated by first-
order autoregressive process, that is, that the disturbance of the current
time period is a linear function of the disturbance in the previous time
period. The interdependence is measured by the coefficient of autocor-
relation, rho. Remedial action then involves estimating a generalized
difference equation in which (¥, — pY;_)) is regressed on (X, — pX,_1),
where p is an estimate of the coefficient of autocorrelation. But what
about the dummy variables? Should the same transformation be applied
to them? The answer is no (see Maddala, 1992, pp. 321-322). Given that
the dummy variable defines two groups of observations, the pivotal
observation is the first observation in the second period. The researcher
must define the observations within those groups as follows:

1. Values on D remain O for all observations in the first period; the value for
the first observation in the second period is 1/(1 — p); all other observations
in the second period are set equal to 1.

2. The value of the product term, DX, is set to 0 for all cbservations in the
first period; the first observation in the second period is set to Xi; remaining
observations in the second period are set to (X; ~ pX;-1).

7. CONCLUSIONS

Although students sometimes regard the appellation dummy variables
as humorously deprecating, the proper use of dummy variables can
greatly enhance the flexibility of the regression model. However, proper
use and interpretation of dummy variables does involve a number of
complexities; the goal of this text has been to work through some of
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these complexities and provide readers with some guidelines for using
dummy variables in their investigations. This treatment is by no means
exhaustive. We have confined our attention to dummy variables as
independent variables in single-equation models. However, methods for
using binary variables in factor analysis, as endogenous or exogenous
variables in structural equation systems, or as dependent variables in
single- or multiple-equation systems receive an increasing amount of
attention in the technical literature. Readers interested in pursuing more
advanced topics dealing with the analysis of qualitative data are re-
ferred to Maddala’s (1983) treatment of limited dependent variables in
regression models; Haberman’s (1978, 1979) two-volume work and
Goodman’s (1978) text on the analysis of qualitative data; Aldrich and
Nelson’s (1984) introduction to linear probability, logit, and probit
models; Allison’s (1984) discussion of event history models; Muthen’s
(1984) and Shockey’s (1988) discussions of discrete data models with
unobserved variables; the work by Clogg and Goodman (1984, 1985)
on latent structure analysis; and Winship and Mare’s (1983, 1984)
papers on structural equation models and regression models with dis-
crete data,

NOTES

. To ensure a sufficient number of blacks to produce separate reliable estimates,
households in predominantly black enumeration districts were oversampled. To simplify
presentation, however, unweighted data are used in these exercises,

2. Of less practical importance are the remaining correlation coefficients among the
dummy variables for occupational category. Because they reference different and mutu-
ally exclusive categories of a single attribute {occupation), these dummy variables are
necessarily inversely related; that is, the correlations are negative. In the case of dichot-
omous variables, such as race in this example, the correlation between BLACK and
WHITE (a dummy coded 1 if white)} is necessarily —~1.00. In the case of polytomous
variables, however, the corrclation, though still necessarily negative, will be less than
perfect. A respondent who is a service worker is necessarily not a lower white-collar
worker, a crafisman, an operative, or 2 laborer, but a respondent who is not a service
worker may or may not be an operative, may or may not be a laborer, and so on. The size
of the correlation between two dummy variables is a function of the number of cases coded
1 on each of the two variables and sample size. Thus in Table 2,3, craftsmen and operatives
contain the largest number of cases, and the correlation between these two categories is
also highest at ~328. In contrast, service workers and laborers are among the smallest
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categories, with a correlation of —.108. In this situation, the correlation between the two
dummy variables is equal to —[(p;p; /(1 ~ pjl ~ ,p_,;f)]V2.

3. It is important to keep in mind that correlation coefficients are sensitive to the
variances of the variables. For dummy variables, correlation coefficients depend on the
relative frequencies of the various categories.

4. Because Model | is a bivariate regression, the F test and # test are equivalent tests:
the 1 value for this test, ~18.7, is the square root of the F value, 348.3. The information
obtained through estimation of this regression model is also equivalent to the results from
a one-way analysis of variance. Identical estimates of group means occur, and the F tests
yield the same result {as well as the same numerical value) In addition, eta-squared
{which in this example equals .09792) is the same as the R? for Model 1.

5, The degrees of freedom for the F test combine the degrees of freedom associated
with the regression and residual sums of squares. Degrees of freedom for regression sums
of squares are equal to the number of independent variables specified in the model {in
this case 5 for the 5 dummy variables included). Degrees of freedom for residual sums of
squares are cqual to N - k - I, where N is the number of observations and k is the number
of mdependem variables in the model. When the F test is calculated as the ratio of R o
1 - R, the degrees of freedom are the same as those described above.

6. Because the choice of reference group is arbitrary from a mathematical standpoint,
the researcher can always choose a different reference group and run the regression again,
allowing the program to provide the ¢ tests of interest,

7. Equation 4.4 also establishes that for blacks the difference in expected INCOME
between occupational categories is captured by the sum of two coefficients.

8. In fact, the absence of significant occupational differences in average garnings for
blacks is largely due to the additional control variables—education and job tenure. Had
we estimated a model that included only race, occupation, and racefoccupation product
terms, the result would have been the following equation: E(¥;} = 10,9603 -
3,958.4(BLACK) - 2,898.9%(0OCC3) — 3,625.6(0CC3) - 4,875 .0{0OCC3) - 6,154.7(0CCs)
- 6,182.9(0CCg) + 1,747.8(BLOCC2) + 1,781.6(BLOCC3) + 2,594.5(BLOCCy) +
3,238.6(BLOCCS) + 2,885.4(BLOCCg). The ¢ values associated with all coefficients were
greater than +2.00. Using Equation 4.5 to construct comparable ¢ tests for eccupational
differences in mean income among blacks, only the contrast between lower white-collar
and upper white-collar workers failed to achieve significance at the .05 level. The reader
can also use the estimates reported above to verify the equivatence of this specification
with the calculation of race-by-occupation category means (as reported in Table 2.2).

9. It is possible to raise this question of differential effects for education and job
tenure relative to occupational category as well. In this example, we have been interested
in assessing differences between blacks and whites—-not only in the level of expected
income, but in the structure of effects that are linked to those income levels. Rather than
speculate that the effect of education may differ by race, however, we could have
hypothesized that it differed by occupational category. Perhaps additional years with the
same employer, as an indicator of stability, loyalty to the firm, or accumulated job-specific
training, pays a higher dividend for skilled craftsmen than it does for tuborers. Perhaps
additional years of formal education allow professional workers to command higher
salaries, but do little to enhance the bargaining position of factory operatives. Had our
interest been in occupation-specific effects of education and job tenure, the product terms
would have numbered 10—1 for gach occupational dummy variable and education; t for
each occupational dummy varizble and job tenure. If we tested oaly for occupational
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differences in effects and found that significantly different effects were indicated for both
education and job tenure, we would have constructed 6 pairs of parallel lines: to show the
differential effect of education, each pair of solid lines for a specific occupational group
would have the same slope for blacks and for whites, but a different stope from solid lines
for other occupational categories. The same would hold true for the broken lines as
illustration of the differential effects of job tenure.

10. Against a null hypotheses that § = 0, the ¢ test for —.16 yields a 1 value of ~1.45,
and the 7 test for —.32 yields a ¢ value of ~2.29.

11. Tests for the equality (constancy) of parameters between two populations have been
proposed. One such test adapts an analysis of variance framework (Chow, 1960; Maddaia,
1992). The procedure requires that we first estimate the regression model for each group
separately and obtain the residual sum of squares (RSS;) from the separate regressions.
We must also estimate the regression model for the pooled sample and obtain the RSS for
the pooled regression. The Ftest (with &k + 1 and ny + np ~ 2k — 2 degrees of freedom) for
the equality of parameters is F = {(RSSpooled — LRSSk + DV LRSS /ny. + np — 2k
— 2)1, where E,RSS,- is the sum of the RSS from the separate subgroup regressions, k is
the number of independent variables in the model, and a; and n2 are the number of
observations in the two subgroups. An F value sufficiently lazge 10 reject the hypothesis
of equality of parameters simply means that not all the independent variables have
uniform effects across the two subgroups; however, this test does not indicate which
parameters are different.

12. The mean residual sum of squares, RSS/{n — k ~ 1), where # is the number of cases,
k is the number of independent variables in the model, and RSS is the residual sum of
squtares calculated as Zef, is routinely available through regression packages. Under OLS
assumptions, this quanlity provides an unbiased estimate of o, the population variance
of u;.

13. In caiculating logarithms, we must specify 2 base number. The most common bases
are e, also known as the base for the “natural™ logarithm, and 10. The value of e is 2.72.
To take the logarithm of X to the base ¢, we determine the power to which e must be raised
in order to produce X, Similarly, to take the logarithm of X to the base 10, we determine
the power to which 10 must be raised in order to produce X. Logarithms collapse a
distribution differentially. The nonlinearity is also clear, because the differences among
log1g values of 1, 2, and 3 coincide with values in the origina) distribution of 16, 100,
and 1,000.

14. The procedure for assessing the significance of the effect of being black for each
occupational group is equivalent to the procedure developed for determining the signifi-
cance of occupational differences for blacks versus whites. The effect of being black for
upper white-collar workers is captured by the regression coefficient for BLACK. The
effect of being black for lower white-collar workers equals By + Bg; for skilled workers,
it is B) + Byp; for operatives, By + By); for service workers, By + By2; and for laborers,
B) + By3. To see if there are significant racial differences {net of other specified effects)
within occupational categories, we use the 1 test described in Equation 4.5, Calculated ¢
values for the five occupation groups described above are —4.07, —5.58, —5,63, -1.90, and
~4.70, respectively,

15. There are a variety of choices to be made when creating contrast-coded dummy
variables; in this situation, for example, we could have contrasted skilled workers to the
combination of operatives, service workers, and jaborers; skilled workers would have
received a code of 1, whereas operatives, service workers, and laborers would have all
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been coded ~¥3. Remaining dummy variables would have contrasted operatives to the
combination of service workers and laborers, with the final contrast being the same as the
illustration in the lext.

16. Readers familiar with traditional analysis of variance designs may noie the similarity
between this situation and the requirement of equal cell sizes to produce orthogonal
designs in an n-way ANOVA,

17. An atternative test for the significance of the contrast defined by Cs, the difference
between service workers and laborers, was described in Chapter 3. Equation 3.1 provides
the formula for testing the significance of the difference between two groups desi gnated
by binary-coded dummy variables. The reader can use the results eeported in Table 3.1 t0
verify that the two procedures produce identical ¢ values and that the contrast and its
standard error are identical 1o the estimated difference in means and the standard error of
the difference defined by Bquation 3.1
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