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Design of the Book

One thing that I learned in writing this book is that I had been
wrongly assuming that we phoneticians were the main users of quan-
titative methods in linguistics. I discovered that some of the most sophis-
ticated and interesting quantitative techniques for doing linguistics are
being developed by sociolinguists, historical linguists, and syntacticians.
So, I have tried with this book to present a relatively representative
and usable introduction to current quantitative research across many
different subdisciplines within linguistics.!

The first chapter “Fundamentals of quantitative analysis” is an
overview of, well, fundamental concepts that come up in the remain-
der of the book. Much of this will be review for students who have
taken a general statistics course. The discussion of probability distri-
butions in this chapter is key. Least-square statistics — the mean and
standard deviation, are also introduced.

The remainder of the chapters introduce a variety of statistical
methods in two thematic organizations. First, the chapters (after the
second general chapter on “Patterns and tests”) are organized by
linguistic subdiscipline ~ phonetics, psycholinguistics, sociolinguistics,
historical linguistics, and syntax.

! I hasten to add that, even though there is very much to be gained by studying tech-
niques in natual language processing (NLP), this book is not a language engineering
book. For a very authoritative introduction to NLP I would recommend Manning and
Schiitze’s Foundations of Statistical Natural Language Processing (1999).
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This organization provides some familiar landmarks for students and
a convenient backdrop for the other organization of the book which
centers around an escalating degree of modeling complexity culminating
in the analysis of syntactic data. To be sure, the chapters do explore
some of the specialized methods that are used in particular disciplines
— such as principal components analysis in phonetics and cladistics in
historical linguistics — but I have also attempted to develop a coherent
progression of model complexity in the book.

Thus, students who are especially interested in phonetics are well
advised to study the syntax chapter because the methods introduced
there are more sophisticated and potentially more useful in phonetic
research than the methods discussed in the phonetics chapter!
Similarly, the syntactician will find the phonetics chapter to be a use-
ful precursor to the methods introduced finally in the syntax chapter.
The usual statistics textbook introduction suggests what parts of the
book can be skipped without a significant loss of comprehension.
However, rather than suggest that you ignore parts of what I have writ-
ten here (naturally, I think that it was all worth writing, and I hope it
will be worth your reading) I refer you to Table 0.1 that shows the con-
tinuity that I see among the chapters.

The book examines several different methods for testing research
hypotheses. These focus on building statistical models and evaluating
them against one or more sets of data. The models discussed in the
book include the simple t-test which is introduced in Chapter 2 and
elaborated in Chapter 3, analysis of variance (Chapter 4), logistic
regression (Chapter 5), linear mixed effects models and logistic linear
mixed effects models discussed in Chapter 7. The progression here is
from simple to complex. Several methods for discovering patterns in
data are also discussed in the book (in Chapters 2, 3, and 6) in pro-
gression from simpler to more complex. One theme of the book is that
despite our different research questions and methodologies, the statistical
methods that are employed in modeling linguistic data are quite
coherent across subdisciplines and indeed are the same methods that
are used in scientific inquiry more generally. I think that one measure
of the success of this book will be if the student can move from this
introduction — oriented explicitly around linguistic data — to more gen-
eral statistics reference books. If you are able to make this transition I
think I will have succeeded in helping you connect your work to the
larger context of general scientific inquiry.
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Table 0.1 The design of the book as a function of statistical approach
(hypothesis testing vs. pattern discovery), type of data, and type of
predictor variables.

Hypothesis testing Predictor variables
Factorial Continuous Mixed random and
(nominal) fixed factors
Type of data  Ratio t-test (Chs 2 & 3)  Linear Repeated measures
(continuous) regression ANOVA (Ch. 4)
(Chs 2 & 3)
ANOVA (Ch. 4) Linear mixed effects
(Ch. 7)
Nominal x* test (Ch. 5) Logistic Logistic linear mixed
(counting) Logistic regression  regression effects (Ch. 7)
(Ch. 5) (Ch. 5)
Pattern discovery Type of pattern
Categories Continuous
Type of data Many continuous Principal components Linear regression
dimensions (Ch. 3) (Ch. 3)
Principal components
(Ch. 3)
Distance matrix Clustering (Ch. 6)
MD Scaling (Ch. 6)
Shared traits Cladistics (Ch. 6)

A Note about Software

One thing that you should be concerned with in using a book that
devotes space to learning how to use a particular software package is
that some software programs change at a relatively rapid pace.

In this book, I chose to focus on a software package (called “R”) that
is developed under the GNU license agreement. This means that the
software is maintained and developed by a user community and is dis-
tributed not for profit (students can get it on their home computers
at no charge). It is serious software. Originally developed at AT&T
Bell Labs, it is used extensively in medical research, engineering, and
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science. This is significant because GNU software (like Unix, Java, C,
Perl, etc.) is more stable than commercially available software —
revisions of the software come out because the user community needs
changes, not because the company needs cash. There are also a number
of electronic discussion lists and manuals covering various specific tech-
niques using R. You’ll find these resources at the R project web page
(http://www.r-project. org).

At various points in the text you will find short tangential sections
called “R notes.” I use the R notes to give you, in detail, the com-
mand language that was used to produce the graphs or calculate the
statistics that are being discussed in the main text. These commands
have been student tested using the data and scripts that are avail-
able at the book web page, and it should be possible to copy the com-
mands verbatim into an open session of R and reproduce for yourself
the results that you find in the text. The aim of course is to reduce
the R learning curve a bit so you can apply the concepts of the book
as quickly as possible to your own data analysis and visualization
problems.

Contents of the Book Web Site

The data sets and scripts that are used as examples in this book
are available for free download at the publisher’s web site — www.
blackwellpublishing.com. The full listing of the available electronic
resources is reproduced here so you will know what you can get from
the publisher.

Chapter 2 Patterns and Tests

Script: Figure 2.1.

Script: The central limit function from a uniform distribution
(central.limit.unif).

Script: The central limit function from a skewed distribution
(central.limit).

Script: The central limit function from a normal distribution.

Script: Figure 2.5.

Script: Figure 2.6 (shade.tails)

Data: Male and female F1 frequency data (F1_data.txt).

Script: Explore the chi-square distribution (chisq).
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Chapter 3 Phonetics

Data: Cherokee voice onset times (cherokeeVOT.txt).

Data: The tongue shape data (chaindata.txt).

Script: Commands to calculate and plot the first principal component
of tongue shape.

Script: Explore the F distribution (shade.tails.df).

Data: Made-up regression example (regression.txt).

Chapter 4 Psycholinguistics

Data: One observation of phonological priming per listener from Pitt
and Shoaf’s (2002).

Data: One observation per listener from two groups (overlap versus
no overlap) from Pitt and Shoaf’s study.

Data: Hypothetical data to illustrate repeated measures of analysis.

Data: The full Pitt and Shoaf data set.

Data: Reaction time data on perception of flap, /d/, and eth by
Spanish-speaking and English-speaking listeners.

Data: Luka and Barsalou (2005) “by subjects” data.

Data: Luka and Barsalou (2005) “by items” data.

Data: Boomershine’s dialect identification data for exercise 5.

Chapter 5 Sociolinguistics

Data: Robin Dodsworth’s preliminary data on /1/ vocalization in
Worthington, Ohio.

Data: Data from David Durian’s rapid anonymous survey on /str/ in
Columbus, Ohio.

Data: Hope Dawson’s Sanskrit data.

Chapter 6 Historical Linguistics

Script: A script that draws Figure 6.1.
Data: Dyen, Kruskal, and Black’s (1984) distance matrix for 84 Indo-

European languages based on the percentage of cognate words

between languages.
Data: A subset of the Dyen et al. (1984) data coded as input to the Phylip

program “pars.”
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Data: IE-lists.txt: A version of the D :
. ' en et al. word 1 : _
able in the scripts below. y ord lists that is read

Script: make_dist: This Perl scri
_dist: pt tabulates all of the 1 i

the Dyen et al. word lists. ¢ etters sed in
Scilpt: get_IE_distance: This Perl script implements the “spelling dis-

ance” metric that was used to calculate dista i

the Dyen ot oL Tar nces between words in
Scrl}it:Iré\a;e_matrix: Another Perl script. This one takes the output of
et IE dist o .

rgead. 1stance and writes it back out as a matrix that R can easily

Data: A distance matrix produced from th i
e spellings of i

Dyen et al. (1984) data set. perings of words i the

Data: Distance matrix for eigh
ght Bantu langu f i

Longonge S guages from the Tanzanian

Data: A phonetic distance matrix of Ba
: ntu lan £

Glick, and Criper (1971). usges from Ladefoged,
Data: The TLS 'Bamju data arranged as input for phylogenetic parsi-
mony analysis using the Phylip program pars.

Chapter 7 Syntax

Data: Results from a magnitude estimation study.
Data: Verb argument data from CoNLL-2005.

Script: Cross-validation of linear mixed effects models.
Data: Bresnan et al.’s (2007) dative alternation data.




1 Fundamentals of
Quantitative Analysis

In this chapter, I follow the outline of topics used in the first chapter
of Kachigan, Multivariate Statistical Analysis, because I think that that
is a very effective presentation of these core ideas.

Increasingly, linguists handle quantitative data in their research.
Phoneticians, sociolinguists, psycholinguists, and computational linguists
deal in numbers and have for decades. Now also, phonologists, synta-
cticians, and historical linguists are finding linguistic research to
involve quantitative methods. For example, Keller (2003) measured
sentence acceptibility using a psychophysical technique called magni-
tude estimation. Also, Boersma and Hayes (2001) employed probablis-
tic reasoning in a constraint reranking algorithm for optimality theory.

Consequently, mastery of quantitative methods is increasingly
becoming a vital component of linguistic training. Yet, when I am asked
to teach a course on quantitative methods I am not happy with the avail-
able textbooks. I hope that this book will deal adequately with the fun-
damental concepts that underlie common quantitative methods, and
more than that will help students make the transition from the basics
to real research problems with explicit examples of various common
analysis techniques.

Of course, the strategies and methods of quantitative analysis are of
primary importance, but in these chapters practical aspects of handling
quantitative linguistic data will also be an important focus. We will be
concerned with how to use a particular statistical package (R) to dis-
cover patterns in quantitative data and to test linguistic hypotheses.
This theme is very practical and assumes that it is appropriate and use-
ful to look at quantitative measures of language structure and usage.

We will question this assumption. Salsburg (2001) talks about
a “statistical revolution” in science in which the distributions of
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measurements are the objects of study. We will, to some small extent,
consider linguistics from this point of view. Has linguistics participated
in the statistical revolution? What would a quantitative linguistics be
like? Where is this approach taking the discipline?

Table 1.1 shows a set of phonetic measurements. These VOT (voice
onset time) measurements show the duration of aspiration in voiceless
stops in Cherokee. I made these measurements from recordings of one

Table 1.1 Voice onset time measurements of a single Cherokee speaker
with a 30-year gap between recordings.

1971 2001
k 67 k 84
k 127 k 82
k 79 k 72
k 150 k 193
k 53 k 129
k 65 k 77
k 75 k 72
k 109 k 81
t 109 k 45
t 126 k 74
t 129 k 102
t 119 k 77
t 104 k 187
t 153 t 79
t 124 t 86
t 107 t 59
t 181 t 74
t 166 t 63
1 75
t 70
t 106
t 54
t 49
t 56
£ 58
t 97
Average 113.5 84.7
Standard Deviation 35.9 36.09

WHAT WE ACCOMPLISH IN QUANTITATIVE ANALYSIS

speaker, the Cherokee linguist Durbin Feeling, that were made in 1971
and 2001. The average VOT for voiceless stops /k/ and /t/ is shorter
in the 2001 dataset. But is the difference “significant”? Or is the dif-
ference between VOT in 1971 and 2001 just an instance of random vari-
ation — a consequence of randomly selecting possible utterances in the
two years that, though not identical, come from the same underlying
distribution of possible VOT values for this speaker? I think that one
of the main points to keep in mind about drawing conclusions from
data is that it is all guessing. Really. But what we are trying to do with
statistical summaries and hypothesis testing is to quantify just how reli-
able our guesses are.

1.1 What We Accomplish in Quantitative Analysis

Quantitative analysis takes some time and effort, so it is important to
be clear about what you are trying to accomplish with it. Note that

e s to be doing it” is not on the list. The four main goals
of quantitative analysis are:

data reduction: summarize trends, capture the common aspects of
a set of observations such as the average, standard deviation, and
correlations among variables;

inference: generalize from a representative set of observations to a
larger universe of possible observations using hypothesis tests
such as the f-test or analysis of variance;

discovery of relationships: find descriptive or causal patterns in data
which may be described in multiple regression models or in factor
analysis;

exploration of processes that may have a basis in probability:
theoretical modeling, say in information theory, or in practical
contexts such as probabilistic sentence parsing.

1.2 How to Describe an Observation

An observation can be obtained in some elaborate way, like visiting
a monastery in Egypt to look at an ancient manuscript that hasn’t
 been read in a thousand years, or renting an MRI machine for an hour
of brain imaging. Or an observation can be obtained on the cheap -
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asking someone where the shoes are in the department store and not-
ing whether the talker says the /r/’s in “fourth floor.”

Some observations can’t be quantified in any meaningful sense. For
example if that ancient text has an instance of a particular form and
your main question is “how old is the form?” then your result is that
the form is at least as old as the manuscript. However, if you were to
observe that the form was used 15 times in this manuscript, but only
twice in a slightly older manuscript, then these frequency counts
begin to take the shape of quantified linguistic observations that can
be analyzed with the same quantitative methods used in science and
engineering. I take that to be a good thing — linguistics as a member
of the scientific community.

Each observation will have several descriptive properties — some
will be qualitative and some will be quantitative — and descriptive
properties (variables) come in one of four types:

Nominal: Named properties — they have no meaningful order on a scale

of any type.

Examples: What language is being observed? What dialect? Which
word? What is the gender of the person being observed? Which vari-
ant was used: going or goin’?

Ordinal: Orderable properties — they aren’t observed on a measurable
scale, but this kind of property is transitive so that if 4 is less than b
and b is less than ¢ then a is also less than c.

Examples: Zipf’s rank frequency of words, rating scales (e.g. excel-
lent, good, fair, poor)?

Interval: This is a property that is measured on a scale that does not
have a true zero value. In an interval scale, the magnitude of differ-
ences of adjacent observations can be determined (unlike the adjacent
items on an ordinal scale), but because the zero value on the scale is
arbitrary the scale cannot be interpreted in any absolute sense.

Examples: temperature (Fahrenheit or Centigrade scales), rating
scales?, magnitude estimation judgments.

Ratio: This is a property that we measure on a scale that does have an
absolute zero value. This is called a ratio scale because ratios of these
measurements are meaningful. For instance, a vowel that is 100 ms long
is twice as long as a 50 ms vowel, and 200 ms is twice 100 ms. Contrast

FREQUENCY DISTRIBUTIONS 5

this with temperature — 80 degrees Fahrenheit is not twice as hot as
40 degrees.

Examples: Acoustic measures — frequency, duration, frequency
counts, reaction time.

13 Frequency Distributions: A Fundamental
Building Block of Quantitative Analysis

You must get this next bit, so pay attention. Suppose we want to know
how grammatical a sentence is. We ask 36 people to score the sentence
on a grammaticality scale so that a score of 1 means that it sounds pretty
yngrammatical and 10 sounds perfectly OK. Suppose that the ratings
in Table 1.2 result from this exercise.

Interesting, but what are we supposed to learn from this? Well,
we're going to use this set of 36 numbers to construct-a frequency

Table 1.2 Hypothetical data of grammaticality ratings for a group of
36 raters.

Person # Rating Person # Rating

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

B 1 Gl U WO Wk~ O G oy G
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distribution and define some of the terms used in discussing fre-

quency distributions. Table 1.2

FREQUENCY DISTRIBUTIONS

Table 1.3 Frequency distributions of the grammaticality rating data in

Rating Frequencies Relative
frequencies

Cumulative
frequencies

Relative
cumulative
frequencies

5.6
28
16.7
222
33.3
13.9
2.8
0.0
2.8

O W

17
29
34
35
35
36

5.6
8.3
25.0
47.2
80.6
94.4
97.2
97.2
100.0
100.0

Look again at Table 1.2. How many people gave the sentence a
rating of “1”? How many rated it a “2”? When we answer these ques-
tions for all of the possible ratings we have the values that make up

the frequency distribution of our sentence grammaticality ratings.
These data and some useful recodings of them are shown in Table 1.3.

You’ll notice in Table 1.3 that we counted two instances of rating
“1”, one instance of rating “2”, six instances of rating “3”, and so on.
Since there were 36 raters, each giving one score to the sentence, we
have a total of 36 observations, so we can express the frequency counts
in relative terms — as a percentage of the total number of observations.
Note that percentages (as the etymology of the word would suggest)
are commonly expressed on a scale from 0 to 100, but you could express
the same information as proportions ranging from 0 to 1.

The frequency distribution in Table 1.3 shows that most of the
grammaticality scores are either “4” or “5,” and that though the scores
span a wide range (from 1 to 9) the scores are generally clustered in
the middle of the range. This is as it should be because I selected the
set of scores from a normal (bell-shaped) frequency distribution that

Frequency

centered on the average value of 4.5 — more about this later.

The set of numbers in Table 1.3 is more informative than the set in
Table 1.2, but nothing beats a picture. Figure 1.1 shows the frequen-
cies from Table 1.3. This figure highlights, for the visually inclined, the

same points that we made regarding the numeric data in Table 1.3. hat was presented in Table 1.2.
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0.8

Frequency
0.6

04

The property that we are seeking to study with the “grammatical-
ity score” measure is probably a good deal more gradient than we
permit by restricting our rater to a scale of integer numbers. It may be
that not all sentences that he/she would rate as a “5” are exactly equi-
valent to each other in the internal feeling of grammaticality that they
evoke. Who knows? But suppose that it is true that the internal gram-
maticality response that we measure with our rating scale is actually
a continuous, gradient property. We could get at this aspect by pro-
viding a more and more continuous type of rating scale — we'll see more
of this when we look at magnitude estimation later — but whatever scale
we use, it will have some degree of granularity or quantization to
it. This is true of all of the measurement scales that we could imagine
using in any science.

So, with a very fine-grained scale (say a grammaticality rating on a
scale with many decimal points) it doesn’t make any sense to count the
number of times that a particular measurement value appears in the
data set because it is highly likely that no two ratings will be exactly
the same. In this case, then, to describe the frequency distribution of
our data we need to group the data into contiguous ranges of scores
(bins) of similar values and then count the number of observations in
each bin. For example, if we permitted ratings on the 1 to 10 gram-
maticality scale to have many decimal places, the frequency distribu-
tion would look like the histogram in Figure 1.2, where we have a count
of 1 for each rating value in the data set.

Figure 1.3 shows how we can group these same data into ranges
(here ratings between 0 and 1, 1 and 2, and so on) and then count the
number of rating values in each range, just as we counted before, the

gure 1.2 A histogram of the frequency distribution of grammaticality
tings when rating values come on a continuous scale.

Frequency

The same continuous rating data that was shown in Figure 1.2,
now the frequency distribution is plotted in bins.
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number of ratings of a particular value. So, instead of counting the num-
ber of times the rating “6” was given, now we are counting the number
of ratings that are greater than or equal to 5 and less than 6.

gure 14 A frequency histogram with 1,000 bars plotting frequency in
00 observations.

OK. This process of grouping measurements on a continuous scale
is a useful, practical thing to do, but it helps us now make a serious
point about theoretical frequency distributions. This point is the foun-
dation of all of the hypothesis testing statistics that we will be looking
at later. So, pay attention!

Let’s suppose that we could draw an infinite data set. The larger our
data set becomes the more detailed a representation of the frequency
distribution we can get. For example, suppose I keep collecting sen-
tence grammaticality data for the same sentence, so that instead of
ratings from 36 people I had ratings from 10,000 people. Now even
with a histogram that has 1,000 bars in it (Figure 1.4), we can see that
ratings near 4.5 are more common than those at the edges of the rating
scale. Now if we keep adding observations up to infinity (just play along
with me here) and keep reducing the size of the bars in the histogram
of the frequency distribution we come to a point at which the inter-
vals between bars is vanishingly small — i.e. we end up with a con-
tinuous curve (see Figure 1.5). “Vanishingly small” should be a tip-off

gure 1.5 The probability density distribution of 10,000 observations and
theoretical probability density distribution of a normal distribution with
mean of 4.5 and a standard deviation of 2.




12 FUNDAMENTALS OF QUANTITATIVE ANALYSIS

TYPES OF DISTRIBUTIONS 13

_One useful aspect of this definitien-of-a.theoretical distribution of
ata (besides that it derives from just two numbers, the mean value
and a measure of how variable the data are) is th, of the area
der the curve f, is 1. So, instead of thinking in terms of a “frequency”
stribution, the normal curve gives us a way to calculate the prob-

that we have entered the realm of calculus. Not to worry though, we're
not going too far.

ity of any set of observations by finding the area undg_r_gn__y_p_oi
n of the curve. We'll come back to this.

_ Types of Distributions

ta come in a variety of shapes of frequency distributions (Figure 1.6).
‘or example, if every outcome is equally likely then the distribution
uniform.jThis happens for example with the six sides of a dice — each
e is (supposed to be) equally likely, so if you count up the number
rolls me up “1” it should be on average 1 out of every 6 rolls.
In the normal bell-shaped — distribution, measurements tend to
nd a typical value and values become less and less
ely as they deviate further from this central value. As we saw in the
E . . - tion above, the normal curve is defined by two parameters — what
””” ’ -  central tendency is (1) and how quickly probability goes down as
 move away from the center of the distribution (o).

f measurements are taken on a scale (like the 1-9 grammaticality
ng scale discussed above), as we approach one end of the scale the
Juency distribution is bound to be skewed because there is a limit

The “normal distribution” is an especially useful theoretical functiOI}.
It seems intuitively reasonable to assume that in most cases there is
some underlying property that we are trying to nrte‘asutrﬁ'em-—e 111<aen ir?hrz;
e e e oot of sandom.etvr that Yeops as fom gettng an i e o rmn oo sheued because there i a Lt
g(ifc lxilzzglliement of the underlying property. If this is a good ency distributions . deali . wi’Fh percentage data.and reac-
description of the source of variability in our measurements, then we ta (where negative reaction times are not meaningful),

can model this situation by assuming that the underlying property - ~s.haped dlistribution is a kind of skewed distribution with most
the uncontaminated “true” value that we seek - is at the center of the
frequency distribution that we observe in our mgasu.lrements and tbat
the spread of the distribution is caused by error, with bigger errors being
less likely to occur than smaller errors. o

These assumptions give us a bell-shaped frequency distribution
which can be described by the normal curve, an extremely useful bell-
shaped curve, which is an exponential function of the _meartlvalue (Greek
letter 1 “mew”) and the variance (Greek letter ¢ “sigma”).

ensComing from the very end of the measurement scale. For
iple, if you count speech errors per utterance you might find that
st utterances have a speech error count of 0. So in a histogram, the
ber of utterances with a low error count will be very high and will
ase dramatically as the number of errors per utterance increases.
modal)distribution is like a combination of two normal distribu-
{ere are two peaks. If you find that your data fall in a bimodal
bution you might consider whether the data actually represent
eparate populations of measurements. For example, voice fun-
ntal frequency (the acoustic property most closely related to the
of a person’s voice) falls into a bimodal distribution when you

fi= ~L_ w19 the normal distribution
X

o/2m
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mean and the standard deviation (formal definitions of these are
just ahead.) Also, the normal distribution provides a basis for drawing
inferences about the accuracy of our statistical estimates.

So, it is a good idea to know whether or not the frequency distribu-
tion of your data is shaped like the normal distribution. I suggested
earlier that the data we deal with often falls in an approximately
normal distribution, but as discussed in section 1.4, there are some
common types of data (like percentages and rating values) that are not
normally distributed.

We're going to do two things here. First, we’ll explore a couple of
ways to determine whether your data are normally distributed, and
second we'll look at a couple of transformations that you can use
to make data more normal (this may sound fishy, but transformations
are legal!).

Consider again the Cherokee data that we used to start this chap-
ter. We have two sets of data, thus, two distributions. So, when we
plot the frequency distribution as a histogram and then compare that

50 100 150 200

observed distribution with the best-fitting normal curve we can see that VOT (ms)
both the 2001 and the 1971 data sets are fairly similar to the normal e 1.8 The probability density distribution of the Cherokee 1971 voi
curve. The 2001 set (Figure 1.7) has a pretty normal looking shape, but 't time data. The best-fitting normal curve is also shown i

there are a couple of measurements at nearly 200 ms that hurt the fit.

When we remove these two, the fit between the theoretical normal curve '

and the frequency distribtion of our data is quite good. The 1971 set ré 18) also looks roughly like a normally distributed data set
1gh notice that there were no observations between 80 and 100 ms,

$ (quite small) data set. Though if these data came from a nor-

urve we would have expected several observations in this range.

]

|

Densi
0.000 0.005 0.010 0.015 0.020
1
Densi
0.000 0.005 0.010 0.015 0.020
]

i | B

50 100 150 200 . 50 100 150 200
VOT (ms) VOT (ms)

Figure 1.7 The probability density distribution of the Cherokee 2001 voice
onset time data. The left panel shows the best-fitting normal curve for all of
the data points. The right panel shows the best-fitting normal curve when

the two largest VOT values are removed from the data set.
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large and noisy databas
- .

IS NORMAL DATA NORMAL?

These frequency distribution graphs give an indication of whether
r data is distributed on a normal curve, but we are essentially
ving our hands at the graphs and saying “looks pretty normal to
" 1 guess you shouldn’t underestimate how important it is to look
the data, but it would be good to be able to measure just how
ormally distri

0 do this we measure the degree of fit between the data and the
mal curve with a quantile /quantile plot and a correlation between
_actual quantile scores and the quantile scores that are predicted
the normal curve, The NIST Handbook of Statistical Methods (2004)
this to say about Q-Q plots.

he quantile-quantile (g-q) plot is a graphical technique for determining ?
f two data sets come from populations with a common distribution. 4
A g-q plot is a plot of the quantiles of the first data set against the
Juantiles of the second data set. By a quantile, we mean the fraction (or
yercent) of points below the given value. That is, the 0.3 {or 30%) quan-
ile is the point at which 30% percent of the data fall below and 70% fall
bove that value.
A 45-degree reference line is also plotted. If the two sets come from a
opulation with the same distribution, the points should fall approxi-
tely along this reference line. The greater the departure from this
erence line, the greater the evidence for the conclusion that the two
a sets have come from populations with different distributions.
he advantages of the g-q plot are:

The sample sizes do not need to be equal.

Many distributional aspects can be simultaneously tested. For ex-
ample, shifts in location, shifts in scale, changes in symmetry, and the
presence of outliers can all be detected from this plot. For example,
if the two data sets come from populations whose distributions differ
only by a shift in location, the points should lie along a straight line
that is displaced either up or down from the 45-degree reference line.

he 9-q plot is similar to a probability plot. For a probability plot, the
tiles for one of the data samples are replaced with the quantiles of
eoretical distribution.

é;r regarding the “probability plot” the Handbook has this to say:

tobability plot (Chambers et al. 1983) is a graphical technique for
g whether or not a data set follows a given distribution such as
ormal or Weibull.
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e 1.10 The quantiles-quantiles probability plot comparing the
ee 2001 data with the normal distribution.

Figure 1.9 The quantiles-quantiles probability plot comparing the Cherokee
1971 data with the normal distribution.

The data are plotted against a theoretical distribution in such a way
that the points should form approximately a straight line. Departures from
this straight line indicate departures from the specified distribution.

ts, or we might find that we have a bimodal distribution such that
data comes from a peak around 70 ms, but there are some VOTs
aps in a different speaking style?) that center around a much longer
s) VOT value. We will eventually be testing the hypothesis that
peaker’s VOT was shorter in 2001 than it was in 1971 and the out-
ata values work against this hypothesis. But, even though these
rery long VOT values are inconvenient, there is no valid reason
ove them from the data set (they are not errors of measurement,
ech dysfluencies), so we will keep them.

As you can see in Figure 1.9 the Cherokee 1971 data are just as you
would expect them to be if they came from a normal distribution. In
fact, the data points are almost all on the line showing perfect identity
between the expected “Theoretical quantiles” and the actual “Sample
quantiles.” This good fit between expected and actual quantiles is
reflected in a correlation coefficient of 0.987 — almost a perfect 1 (you'll
find more about correlation in the phonetics chapter, Chapter 3).

Contrast this excellent fit with the one between the normal distri-
bution and the 2001 data (Figure 1.10). Here we see that most of the
data points in the 2001 data set are just where we would expect them
to be in a normal distribution. However the two (possibly three)
largest VOT values are much larger than expected. Consequently, the
correlation between expected and observed quantiles for this data set
(r = 0.87) is lower than what we found for the 1971 data. It may be that
this distribution would look more normal if we collected more data
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at, as the sample quantile values approach zero, the data points
horizontal line. Even with this non-normal distribution,
the correlation between the expected normal distribution and
ved data points is pretty high (r = 0.92).
andard method that is used to make a data set fall on a more
istribution is to transform the data from the original meas-
scale and put it on a scale that is stretched or compressed in
ays. For example, when the data are proportions it is usually
nded that they be transformed with the arcsine transform. This
e original data x and converts it to the transformed data y using

Now, let’s look at a non-normal distribution. We have some ratin | 11/r) arcsine transformation
data that are measured as proportions on a scale from 0 to 1, and in
one particular condition several of the participants gave ratings that
were very close to the bottom of the scale — near zero. So, when we

plot these data in a quantile-quantile probability plot (Figure 1.11), you

oduces the transformation shown in Figure 1.12, in which
that are near 0 or 1 on the x-axis are spread out on the y-axis.
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Figure 1.11 The Normal quantile-quantile plot for a set of data that is not

normal because the score values (which are probabilities) cannot be less
than zero.
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The correlation between the expected values from a normal frequency
distribution and the actual data values on the arcsine transformed
measurement scale (r = 0.96) is higher than it was for the untransformed
data. The better fit of the normal distribution to the observed data
values is also apparent in the normal Q-Q plot of the transformed
data (Figure 1.13). This indicates that the arcsine transform did what
we needed it to do - it made our data more normally distributed

so that we can use statistics that assume that the data fall in a normal
distribution.

1.6 Measures of Central Tendency

Figure 1.14 shows three measures of the the cen
mid-point, of a skewed distribution of data.
The o??of the distribution is the most frequently occurring value
in the distribution - the tip of the frequency distribution. For the
skewed distribution in Figure 1.14, the mode is at about 0.6.
Imagine ordering a data set from the smallest value to the largest.
median Of the distribution is the value in the middle of the ordered
list. There are as many data points greater than the median value then
are less than the median. This is sometimes also called th
gravity”.

The meartyvalue, or the arithmetic average, is the least squares esti-
mate of central tendency

- First, how to calculate the mean — sum the
‘data valtes and thern divide by the number of values in the data set.

tral tendency, or

e “center of

MEASURES OF CENTRAL TENDENCY

Sample quantiles

H
T

-1 0 1 2
Theoretical quantiles

o rm f
Il ure 1 13 Ille IlOIIIlal qU.aI ltlle'qualltﬂe plot fOI t} e arcsine trar leO O
g

t}le data S}lOVVIl n Elgure 1.11.

mode

median

mean

0.6

function()df(x,5,100)(x)

0.00

0

Figure 1.14 The mode, median, and mean of a skewed distribution.
igure 1. ’
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E?:oxi
n

X = mean

Second, what does it mean to be the least squares estimate of cen-
tral tendency? This means that if we take the differencm:ié“ﬁjhe
mean and each value in our data set, square these differences and add
them up, we will have a smaller value than if we were fo do fhe same
thing with the median or any other estimate of the “mid-point” of the
data set. T

n

d? = Y o(x;— % sum of the squared deviations (also called SS)

So, in the data set illustrated in Figure 1.14, the value of 42, the sum
of the squared deviations from the mean, is 4,570, but if we calculate
the sum of squared deviations from the median value we get a d” value
of 4,794. This property, being the least squares estimate of central
tendency, is a very useful one for the derivation of statistical tests
of significance.

I should also note that I used a skewed distribution to show how
the mode, median, and mean differ from each other because with a
normal distribution these three measures of central tendency give the
same value.

MEASURES OF CENTRAL TENDENCY

We should probably also say something about tb@
Suppose you asked someone to rate the grar'nmat‘maht ofa sihot tS;e
tences, but you also let the person rate their ratlfclgs, jco sa}:rh a }i
feel very sure or not very sure at all about the' rating given. These c’i)n1
fidence values could be used as weights (w;) in calculating the centra

tendency of the ratings, so that ratings given with high confidence H}ﬂu—
ence the measure more than ratings given with a sense of confusion.

n
WX,
7= ;l:—o——l-—l weighted mean

Z?:owi
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1.7 Measures of Dispersion

In addition to wanting to know the central point or most typical value
in the data set we usually want to also know how closely clustered the
data are around this central point ~ how dispersed are the data values
away from the center of the distribution? The minimum possible
amount of dispersion is the case in which every measurement has the
same value. In this case there is no variation. I'm not sure what the
maximum of variation would be. TN

A simple, but not very useful measure of dispersion is th range
of the data values. This is the difference between the maximuni-ard
minimum values in the data set. The disadvantages of the range as
a statistic are that (1) it is based on only two observations, so it may
be sensitive to how lucky we were with the tails of the sampling dis-
tribution, and (2) range is undefined for most theoretical distributions
like the normal distribution which extend to infinity.

I don’t know of any measures of dispersion that use the median
— the remaining measures discussed here refer to dispersion around
the mean. T

The average deviation, or mé@Measures the
absolute difference between the mean and each observation. We take
the absolute difference because if we took raw differences we would
be adding positive and negative values for a sum of about zero no mat-
ter how dispersed the data are. This measure of deviation is not as well
defined as is the standard deviation, partly because the mean is the
least squares estimator of central tendency - so a measure of deviation
that uses squared deviations is more comparable to the mean.
(@@ like the mean absolute deviation except that we square
the deviations before averaging them. We have definitions for variance
of a population and for a sample drawn from a larger population.

0% =X (x,— W?/N population variance

s =~ %2/ (n~1) sample variance

Notice that this formula uses the Sum of Squares (SS, also called 42
above, the sum of squared deviations from the mean) and by dividing
by N or n — 1, we get the Mean Squares (MS, also called s* here).

We will see these names (SS, and MS) when we discuss the ANOVA
later.

STANDARD DEVIATION 29

We take (1 — 1) as the denominator in the defir.lition of ¢, sa.mp}ce
variance, because % is not \. The sample mean X 18 f)nly an e;t1mat§
of i, derived from the x;, so in trying to measure variance we ??b 1
keep in mind that our estimate of the .cegtral tendenc x s Pr ;1 5;
wrong to a certain extent. We take this into 2 3 ff . 2
“degree of freedom” in the sample formt.lla. \Degree o ree o
measure of how much precision an estimate of varx
cotrse this is primarily related to the number of observations that servi
as the basis for the estimate, but as a general rulfe the degreecs1 0
freedom decrease as we estimate more parameter§ with tbe same a’caf
set — here estimating both the mean and the variance with the set o
OE;:J axtlaorri:nyge is the average squared deviation — the units are
squared — to get back to the original unit of measure we take the square

root of the variance.

o= o population standard deviation

s=ds sample standard deviation

This is the same as the value known as th @root mean squa:;z:
a measure of deviation used in acoustic phonetics {among O

disciplines).

N2
2_(_"1:_’9_ RMS = sample standard deviation

(n-1)

1.8 Standard Deviation of the Normal
Distribution

e formula for the normal distribution again, you will

If you consider th and any standard

i i lue u,
note that it can be defined for any mean value |1, and ¢ !
deviation 6. However, | mentioned that this distribution 1s' used tlo cai
culate probabilities, where the total area under the curve is equal to 1,

so the area under any portion of the curve is equal to some proPor’qon
of 1. This is the case when the mean of the bell-shaped d1str.1but10n
is 0 and the standard deviation is 1. This is sometimes abbreviated as

N(0,1) — a normal curve with mean 0 and standard deviation 1.
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American Spanish — we could predict that 13% of them would have
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Figure 1.15 Histogram and Q-Q plot of some sample rating data.

— 1 ~x%/2 . . s
fe= Tt the normal distribution: N(0,1)

I would like to make two points about this.

First, because the area under the normal distribution curve is 1, we
can state the probability (area under the curve) of finding a value larger
than any value of x, smaller than any value of x, or between any two
values of x.

Second, because we can often approximate our data with a normal
distribution we can state such probabilities for our data given the mean
and standard deviation.

Let’s take an example of this from some rating data (Figure 1.15).
Listeners were asked to rate how similar two sounds were on a scale
from 1 to 5 and their average ratings for a particular condition in the
experiment (“How different do [d] and [¢] sound?”) will be analyzed
here. Though the histogram doesn’t look like a smooth normal curve
(there are only 18 data points in the set), the Q-Q plot does reveal that
the individual data points do follow the normal curve pretty well | e
(r=0.97). Now, how likely is it, given these data and the normal curve ; standard deviation is 1. N data set — converting the data
that they fall on, that an average rating of less than 1.5 would be I'm talking about standardizing a ia is replaced by the distance
given? The area to the left of 1.5 under the normal curve in the his- values into z-scores, where each datahva u:he digtance is measured as
togram plot is 0.134, so we can say that 13% of the distribution covers between it and the samplei H'leanbwtvfreen the data value and the mean.
rating values less than 1.5, so that if we are drawing more average rat- the number of standard d‘eeylatl,(’)rzi Z te z-scores always have a mean
ing values from our population - ratings given by speakers of Latin As a result of “standardizing” the data,

How does this work? We can relate the frequency distribution of ogr
data to the normal distribution because we know the mean an(i st@ -
ard deviation of both. The key is to be able to express any Vg ue in a
data set in terms of its distance in standard deYlahons from the m;;;r(\i.

For example, in these rating data the mean is 2.3 and the‘stanb Ve
deviation is 0.7. Therefore, a rating of 3 is one stapd'ard dev1atg>1n a oan
the mean, and a rating of 1.6 is one standard dev1at1on. be.low 'i me ts.
This way of expressing data values, in standard dev1at10r.1 ugu s,dprh °
our data on the normal distribution — where the mean is 0 an
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< |  What kind of variable is part of speech and why can’t you draw a

= reasonable distribution of part of speech?

Calculate the average number of syllables per word on this page.

You can do this as a weighted mean, using the count as the weight

for each syllable length.

What is the standard deviation of the average length in syl-

lables? How do you calculate this? Hint: The raw data have one

observation per word, while the count data have several words

summarized for each syllable length.

Are these data an accurate representation of word length in this

0.025 0.025 language? How could you get a more accurate estimate?

Using your word length data from question 1 above, produce a

quantile-quantile (Q-Q) plot of the data. Are these data approxi-

o 5 4 0 j ; : , mately normally distributed? What is the correlation between the
, normal curve quantiles (the theoretical quantiles) and the observed

data? ‘
Figure 1.16 95% of the area under the normal distribution lies between Make a histogram of the data. Do these data seem to follow a
~1.965 and 1.96s. 97.5% is above ~1.96s and 97.5% is less than 1.96s. normal distribution? Hint: Plotting the syllable numbers on the
' x-axis and the word counts on the y-axis (like Figure 1.1) may be
a good way to see the frequency distribution.

- Assuming a normal distribution, what is the probability that a word
of 0 and a standard deviation of 1, just like the normal distribution. will have more than three syllables? How does this relate to the
Here's the formula for standardizing your data: ; observed percentage of words that have more than three syllables
in your data?

0.3

Density

0.1

0.0

xi_.’f

z; = z-score standardization

With standardized values we can easily make probability statements.
For example, as illustrated in Figure 1.16, the area under the normal
curve between —1.96 and 1.96 is 0.95. This means that 95% of the val-
ues we draw from a normal distribution will be between 1.96 standard
deviations below the mean and 1.96 standard deviations above the mean.

EXERCISES

1 Open a dictionary of any language to a random page. Count the
number of words that have 1, 2, 3, 4, etc. syllables. What kind of
distribution do you get?

2 On the same page of the dictionary, count the number of instances
of the different parts of speech —noun, verb, adjective, function word.



2 Patterns and Tests

%n flusfc?aptgr, I will present two key strategies in the quantitative ana-
y51:; of linguistic data. We will come back to these in several different
contexts in later chapters, so this is supposed to provide a foundation

for those later discussions of how
. to appl : .
sion analysis to data, pply hypothesis testing and regres-

2.1 Sampling

But first I would like to say somethin

;::tjlf i magie1 t}ﬁ( distincticzm between a population parameter (Greek
ymbols like U, 0, 6) and sample statistics (R
bols like %, s, s%). These differ 1 i e the et oy
, 8, 8. er like this: If we take the aver i

. age height

.Of t;elveryone in the room, then the mean value that we Come;g up wglth

gut gfpopulanor; dpe;rlimeter K, of the population “everyone in the room.” -
it we would like to think that this group of i '

: le is repres-
entative of a larger group like “e tthis aniverets ety
five c veryone at this university” or “every-

one in this town,” then our measured mean value is a sample statist}ilc

¥ that may or may not b i
£ that y e a good estimate of the larger population

g about sampling. In Chap-

. In ;he normal course of events as we study language, we rely on
amples to represent larger populations. It isn’t practical to directly

measure a population parameter. Imagine trying to find the grammat-

e, representative i
of ettty and w P sample from the population

35

SAMPLING

So, what makes a good sample? To be an adequate representation
of a population, the sample should be (1) large enough, and (2)
random. Small samples are too sensitive to the effects of the occa-
sional “0dd” value, and nonrandom samples are likely to have some
bias (called sampling bias) in them.

To be random it must be the case that every member of the
population under study has an equal chance of being included in
the sample. Here are two ways in which our linguistic samples are
usually nonrandom.

We limit participation in our research to only certain people. For
example, a consultant must be bilingual in a language that the
linguist knows, college students are convenient for our listening
experiments, we design questionnaires and thereby require our
participants to be literate.

We observe linguistic performance only in certain restricted con-
texts. For example, we make tape recordings while people are
reading a list of words or sentences. We ask for sentence judgments
of sentences in a particular order on a questionnaire.

Obviously, it is pretty easy to violate the maxims of good sampling,
but what should you do if your sample isn't representative of the
population that you would most like to study? One option is to try
harder to find a way to get a more random, representative sample. For
instance you might collect some data from monolingual speakers and
compare this with your data drawn from bilingual speakers. Or you
might try conducting a telephone survey, using the listing of people
in the phone book as your “population.” And to address the context
issue, you might try asking people meaningful questions in a natural
context, so that they don’t know that you are observing their speech.
Or you might simply reverse the order of your list of sentences on the
questionnaire.

In sum, there is a tradeoff between the feasibility of research and
the adequacy of the sample. We have to balance huge studies that
address tiny questions against small studies that cover a wider range
of interesting issues. A useful strategy for the discipline is probably
to encourage a certain amount of “calibration” research that answers
limited questions with better sampling.
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2.2 Data

Some of this discussion may reveal that I have a particular attitude
about what linguistic data are, and I think this attitude is not all that
unusual but worth stating explicitly. The data in linguistics are any
observations about language. So, I could observe people as they speak
or as they listen to language, and call this a type of linguistic data.
Additionally, a count of forms used in a text, whether it be modern
newspaper corpora or ancient carvings, is data. I guess you could say
that these are observations of people in the act of writing language and
we could also observe people in the act of reading language as well.
Finally, I think that when you ask a person directly about language,
their answers are linguistic data. This includes native speaker judgments,
perceptual judgments about sounds, and language consultants’
answers to questions like “what is your word for finger?”
Let’s consider an observation and some of its variables.
The observation is this: A native speaker of American
judges the grammaticality of the sentence *
nothing” to be a 3 on a 7-point scale.
There are a large number of variables associated with this observa-
tion. For example, there are some static properties of the person who
provided the judgment — gender, age, dialect, socioeconomic status, size
of vocabulary, linguistic training. Additionally, aspects of the situation
in which the judgment occurs may influence the participant. One com-
mon factor is what prior judgments were given already in this session.
Perhaps we can’t try all possible orderings of the sentences that we want
to test, but we should bay attention to the possibility that order mat-
ters. Additionally, the person’s prior experience in judging sentences
probably matters. I've heard syntacticians talk about how their judg-
ments seem to evolve over time and sometimes reflect theoretical
commitments.
The task given to the participant may also influence the type of
answer we get. For example, we may find that a fine-grained judgment
task provides greater separation of close cases, or we may find that
variance goes up with a fine-grained judgment task because the par-
ticipant tends to focus on the task instead of on the sentences being
presented.
We may also try to influence the participant’
instructing them to pay particular attention to s

English
‘Josie didn’t owe nobody

8 performance by
ome aspect of the
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i i ticular way. I've done this to
imuli or approach the task in a par .
;tﬁgecs (]oflison Flemming, & Wright, 1993) and to sta?tln]mghefsfsrc\t
, ’ i ticipants in Johnson,
Strand, & D’'Imperio, 1999). The par .
](5512}11\?;?:% & Wright gave the same answers regardless. (so it ifsemeceli
ins i them. But the “instruction s
the instructions that we gave , . ' ;
?rfanipulation” in Johnson, Strand, & D Impihno chanfged hs;in;rsa
i an
i talker and thus changed their per orm .
expectations of the ' . . pmance in o
i i t here is that how we
istening experiment. My main poin ' .
lp;::”?cipgantsp may influence their performance in a data collection
SItZiﬂaOg;iitional, very important task variable is th.e list of mate?i\klls.
The context in which a judgment occurs inﬂuence§ it greatllly. Sotl ei
test sentence appears in a list that has Io.ts of ’u.wformal senht.en}c\er
of the sort that language mavens would cringe at, it may get a hig
rating than if it appeared in a list of “correct” sentences. torent i
Thi observation “3 on a 7-point scale” might have beer} di ferer; N
we had changed any one of these variables. This large collectloln o hpo ean
i i i ical when we study complex hum
tially important variables is typic ‘whe: moplex human
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2.3 Hypothesis Testing

Now keeping in mind the complexities in collecting representa;tivse
sa(r)np,1e3 of linguistic data and the complexities of the data ther?s}e1 Veoi
we come to the first of the two main points of this chapter — hyp

thesis testing.
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We often want to ask questions about mean values. Is this average
voice onset time (VOT) different from that one? Do these two con-
structions receive different average ratings? Does one variant occur more
often than another? These all boil down to the question is % (the mean
of the data x;) different from ¥ (the mean of the data y,)?

The smarty-pants answer is that you just look at the numbers, and
they either are different or they aren’t. The sample mean simply is what
it is. So % is either the same number as 7 or it isn’t. So what we are
really interested in is the population parameter estimated by % and 7 —
call them u, and u,. Given that we know the sample mean values ¥
and j, can we say with some degree of confidence that p, is different
from p,? Since the sample mean is just an estimate of the population
parameter, if we could measure the error of the sample mean then we
could put a confidence value on how well it estimates .

2.3.1 The central limit theorem

A key way to approach this is to consider the sampling distribu-
tion of %. Suppose we take 100 samples from a particular population.
What will the distribution of the means of our 100 samples look
like?

Consider sampling from a uniform distribution of the values 1.. .6,
Le. roll a dice. If we take samples of two (roll the dice once, write down
the number shown, roll it again, and write down that number), we have
62 possible results, as shown in Table 2.1. Notice that the average of
the two rolls is the same for cells in the diagonals. For example, the
only way to average 6 is to roll 6 in both trials, but there are two ways

to average 5.5 — roll a 6 and then a 5 or a 5 and then a 6. As you can

see from Table 2.1, there are six ways to get an average of 3.5 on two
rolls of the dice. Just to drive the point home, excuse the excess of this,
the average of the following six two dice trials is 3.5 - (6,1), (5,2), (4,3),
(34), (2,5), and (1,6). So, if we roll two dice, the probability of having
an average number of dots equal to 3.5 is 6 times out of 36 trials (6 of
the 36 cells in table 2.1).

In general the frequency distribution of the mean for two rolls of a
dice has a shape like the normal distribution — this is shown in Figure
2.1. This is the beginning of a proof of the central limit theorem, which
states that as the number of observations in each sample increases, the
distribution of the means drawn from these samples tends toward
the normal distribution. We can see in this simple example that even
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Table 2.1 The possible outcomes of rolling a dice twice - i.e. samples off
size two from a uniform distribution of the integers 1...6. The number od
the first roll is indicated by the row number and the number of the secon

roll is indicated by the column number.

1 2 3 4 5 6
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 24 2,5 2,6
3 3,1 3,2 3,3 34 3,5 3,6
4 41 4.2 4,3 44 45 4,6
5 5,1 5,2 5,3 54 55 -
6 6,1 6,2 6,3 6,4 y 66
s 4 45 5 55 6
[~
!
=y 74
<
o
5
‘B
g
%
Q o
r-f "
o
o
Q T T T 1
° 1 2 3 4 5 6

Means

Figure 2.1 The frequency distribution of the mean for the samples
illustrated in Table 2.1.

though the observations (dice throws) come from a unifOI‘I.IT distriblé—
tion in which each number on the dice has an equal‘probablhty of 1/6,
the distribution of the means of just two observations looks remark-

ably like a normal distribution.
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Before we continue with this discussion
we need step aside slightly to address
you look at Figure 2.1. To the discri
doesn’t seem right. The probabili
of the dice is 6/36 = 0.1666. So, w

of the central limit theorem
one question that arises when
minating observer, the vertical axis
ty of averaging 3.5 dots on two rolls
hy does the vertical axis in Figure 2.1

to be labelled “density” and how is
probability?

80 up to 0.3? What does it mean
probability density different from

Consider the probability of getting exactly some particular value
on a continuous measurement scale. For example, if we measure the
amount of time it takes someone to respond to a sound, we typically

measure to some chosen degree of accuracy - typically the nearest
millisecond. However, in theory we ¢

arily precise measurement to the nan
continuous measurement scale that pe
the probability of finding exactly on

500 ms, is actually zero because we can always specify some greater
degree of precision that will keep our observation from being exactly
500 ms - 500.00000001 ms. So on a continuous dimension, we can'’t give
a probability for a specific value of the measurement variable. Instead
we can only state the probability of a region under the cumulative dis-
tribution curve, For instance, we can’t say what the probability of a
measurement of 500 is, but we can say for example that about 16% of
the cumulative distribution in Figure 2.2 falls to the left of 500 ms —
that given a population like this one (mean = 600, standard deviation

osecond and beyond. So, on a
rmits arbitrarily precise values,
e particular value, say exactly

ould have produced an arbitr- .-
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value of the function at a
function, the area under th
area under the curve,
at 500 ms is 0.16. This

The probability den:
the amount of change
ity function. If f(x) is
cumulative probabilit

relationship is illustrated in figure 2.2.

sity that we see in Figures 2.1 and 2.2 indicates
in (the derivative of) the cumulative probabil-
the probability density function, and F(x) is the
y function then the relationship is:

a F(x) = f(x) the density function from the cumulative

dx " probability function

The upshot is that we can’t expect the density function to have
the values on the y-axis that we would expect for a cumulative fre-
quency curve, and what we get by going to the trouble of defining a
probability density function in this way is a method for calculating
probability for areas under the normal probability density function.

Let’s return now to the main point of Figure 2.1. We have an equal
probability in any particular trial of rolling any one of the numbers on
the dice - a uniform distri

bution — but the frequency distribution of the
sample mean, even of a small sample size of only two rolls, follows the
normal distribution. This is only approximately true with an 7 of 2. As
we take samples of larger and larger  the distribution of the means
of those samples becomes more and more perfectly normal. In looking
at this example of two rolls of the dice, I was struck by how normal
the distribution of mea

ns is for such small samples. This property of
average values ~ that they tend to fall in a normal distribution as n

increases ~ is called the central limit theorem. The practical consequence
of the central limit theorem is that we can use the normal distribution
(or, as we will see, a close approximation) to make probability state-

ments about the mean - like we did with z-scores — even though the
population distribution is not normal,

Let’s consider another example this time of a skewed distribution.
To produce the left side of Fi

gure 2.3, I started with a skewed popula-
tion distribution as shown in the figure and took 1,000 random samples
from the distribution with a sample size of 10 data points per sample.
I calculated the mean of each of the 1,000 samples so that now I have

a set of 1,000 means. These are plotted in a histogram and theoretical
curve of the histogram that indicate that the frequency distribution of
the mean is a normal distribution. Also, a Q-Q plot (not shown) of these

particular point. In the probability density
e curve from 0 to 500 ms is 16% of the tota]
so the value of the cumulative density function
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Sample size = 50
Standard error = 0.085

_

Sample size = 10
Standard error = 0.19

]V
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Figure 2.3 The sampling distribution of the mean takgn f;ortrIOlI{OWhen
- 1es-tha’c were drawn from a skewed population distribu on when
:liznfample size was only 10 observations, and when the samp
50 observations.

has a correlation of 0.997 between the normal distribution and the
SN dilsggbr}tzoigﬁtﬂsliedren(e)gigure 2.3 shows a §imi1.ar .si.tuatiog
exg;et Iikxilteezjlczh of the 1,000 samples had 50 c:)servatlo?ss ;r; ;;cn Uglst(et; !
i istribution of the mean (
Py Agﬁigievj:q;ggg acrillgt]’if: fit to the normal curve is a 11t1:1§1
‘t?(;t?erc ct)lrl];lait was when we took samples of size 10 from this skewe
dismb'uﬁ('m'F' ure 2.3 that I report the “standard error” of the 1,003
Nouc'e p }118 anei By standard error I mean simply the standez;r1
mea'ns‘ - eafc thIe)e san'lple of 1,000 means. As is apparent fromt kz
d'eVIatmnt}? standard deviation of the means is smaller when we 3.
P ol f ZO than when we take samples of 10 from the skewed 1:-
Sa'mpl'es OThis is a general feature. We are able to get a more accujcr;x1 et
tﬂbutlon‘ f the population mean with a larger sample. You can see ;
es’_fln"ate (')f e vpizege to limit our samples to only one observation each.
e }Sxo 1 :;e the standard error of the mean would be the. sa;ne Zi
the o 3 Cd cieviation of the population being sampled. Wlth arg
thfni)tier; t?.’fe effects of observations from the tails of the distribution
sa
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are dampened by the more frequently occurring observations from the
middle of the distribution.

In fact, this value, the standard deviation of a sample of means, tells
us just that — how accurately we can measure the mean of our raw data
population. If you take a bunch of different samples and find that their
means are really different from each other, then you have to wonder
how accurate any one particular mean is when it comes to estimating
the true mean of the population. Clearly one factor that matters is
the size of the sample. The means drawn from samples of size 10 were
much more spread out than were the means drawn from samples
of size 50. Next we’ll look at another factor that determines how

accurately we can measure the population mean from samples drawn
from that population.
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I made a new version of central.limit() that I decided to call
central.limit.norm() because instead of sampling from a skewed
population distribution, 1 sampled from a normal distribution. In all
other regards central.limit.norm() is exactly like central.limit().
Figure 2.4 shows the population distribution (notice that now it is
a normal distribution), a histogram of 5,000 means drawn from the
population, and a normal curve fit to the histogram of means. The
panels on the left had a population standard deviation (o) of 1, while
the panels on the right had a © of 0.6. The top panels had a sample
size (n) of 15, while for the bottom panels n = 50.

We saw in Figure 2.3 that our estimate of u was more accurate (the
standard deviation of ¥ was smaller) when the sample size increased.
What we see in Figure 2.4 is that the error of our estimates of | are
also smaller when the standard deviation of the population (0) is
smaller. In fact, figure 2.4 makes it clear that the standard error of
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Check this out. Let’s abbreviate the standard error of the mean to
SE — this is the standard deviation of ¥ values that we calculate from
successive samples from a population and it indicates how accurately
we can estimate the population mean | from a random sample of data
drawn from that population. It turns out (as you might expect from
the relationships apparent in Figure 2.4) that you can measure the
standard error of the mean from a single sample — it isn’t necessary to
take thousands of samples and measure SE directly from the distribu-
tion of means. This is a good thing. Can you imagine having to per-
form every experiment 1,000 times so you can measure SE directly?
The relationship between SE and ¢ (or our sample estimate of ¢, s) is:

standard error of the mean: population

standard error of the mean: sample

==

=0.141 =0.0849

6
/50
The calculated values are almost exactly the same as the measured
values of the standard deviation of the sets of 5,000 means.

2.3.2 Score keeping

Here’s what we’ve got so far about how to test hypotheses regarding
means.

1 You can make probability statements about variables in normal
distributions.

2 You can estimate the parameters of empirical distributions as the
least squares estimates of % and s.

3 Means themselves, of samples drawn from a population, fall in a
normal distribution.

4 You can estimate the standard error (SE) of the normal distribution

of % values from a single sample.
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What this means for us is that we can make probability statements
about means.

233 Hy: u=100

Recall that when we wanted to make probability statements about
observations using the normal distribution, we converted our observa-
tion scores into z-scores (the number of standard deviations different
from the mean) using the z-score formula.

So, now to test a hypothesis about the population mean (i) on the
basis of our sample mean and the standard error of the mean we will
use a very similar approach.

X — %

Z-SCore

t-value

However, we usually (almost always) don’t know the population
standard deviation. Instead we estimate it with the sample standard

(or family of distributions), called the t-distribution that takes into account
how certain we can be about our estimate of g, Just as we saw that a
larger sample size gives us a more stable estimate of the population
Inean, so we get a better estimate of the population standard deviation
with larger sample sizes. So the larger the sample size, the closer the
t-distribution is to normal. I show this in Figure 2.5 for the normal
distribution and #-distributions for three different sample sizes. So we
are using a slightly different distribution to talk about mean values, but
the procedure is practically the same as if we were using the normal
distribution. Nice that you don’t have to learn something totally new.

To make a probability statement about a z-score you refer to the
normal distribution, and to make a probability statement about a
t-value you refer to the t-distribution. It may seem odd to talk about
comparing the sample mean to the population mean because we we
can easily calculate the sample mean but the population mean is not
a value that we can know. However, if you think of this as a way to
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Figure 2.5 The normal disfribution (solid line) and t—dis;rib;l)tions for
saltfr?ples .of size n = 21 (dash), n = 7 (dot) and n = 3 (dot, dash).

i i with the
test a hypothesis, then we have something. For instance,

¢ =84.7 and s = 36.1 for the
data, where we observed that X .
Chemkig;;cc)gd i?'x 2001, we can now ask whether the'popuéatlf(c): nrlr:lelix
ittc:f ?iiP;ferent from 100. Let’s just plug the numbers into the

_ 847-100 153 _ 9168
T 3614726  7.08
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e 11 that the statistic ¢ is analogous to z — 1t mea.sures Hifferent
I;:;C:ample mean % is from the hypothesized popul;ﬁon err:;avf]l 1},; Chorer
, s W
i its of the standard error of the mean. ve
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Figure 2.6 The probability density function of ¢ with 25 degrees of
freedom. The area of the shaded region at ¢ < -2.168 indicates that only a
little over 2% of the area under this curve has a t-value less than —2.168.

than 2 standard errors less than the hypothesized mean) might be a
pretty unlikely one to find if the population mean is actually 100 ms.

How unlikely? Well, the probability density function of ¢ with 25
degrees of freedom (since we had 26 observations in the VOT data set)
shows that only 2% of all -values in this distribution are less than
—2.16 (Figure 2.6). Recall that we are evaluating the null hypothesis
that i = 100. Therefore, this probability value says that if we assume
that u = 100 it is pretty unlikely (2 times in 100) that we would draw
a sample that has an ¥ of 84.7. The more likely conclusion that we should
draw is that the population mean is less than 100.
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measurements. If the sample mean (%) is different enough from 100 ms,
then we reject this hypothesis; otherwise we accept it.

The question is, how different is different enough? We can quan-
tify the difference between the sample mean and the hypothesized
population mean in terms of a probability. As we saw above, if the
population mean is 100 ms, then in only 2 times in 100 could we get
a sample mean of 84.7 or less. Suppose that we decide then that this
is a big enough difference - the probability of a sample of 84.7 mean
coming from a population that has a mean of 100 ms is pretty darn
low — so we reject the hypothesis that u = 100 (let’s label it Hy), and
instead accept the alternative hypothesis that u < 100 (call this H, and
note that this is only one of several possible alternative hypotheses).

Hy: p=100 Reject
H;: 1 <100 Accept

We have to admit, though, that 2 times out of 100 this decision
would be wrong. It may be unlikely, but it is still possible that H, is
correct — the population mean really could be 100 ms even though our
sample mean is a good deal less than 100 ms. This error probability
(0.02) is called the probability of making a type I error. A type I error
is that we incorrectly reject the null hypothesis — we claim that the
population mean is less than 100, when actually we were just unlucky
and happened to draw one of the 2 out of 100 samples for which the
sample mean was equal to or less than 84.7.

No matter what the sample mean is, you can’t reject the null
hypothesis with certainty because the normal distribution extends
from negative infinity to positive infinity. So, even with a population
mean of 100 ms we could have a really unlucky sample that has a mean
of only 5 ms. This probably wouldn’t happen, but it might. So we have
to go with our best guess.

In practice, “going with your best guess” means choosing a type I error
probability that you are willing to tolerate. Most often we are willing
to accept a 1 in 20 chance that we just got an unlucky sample that leads
us to make a type I error. This means that if the probability of the t-value
that we calculate to test the hypothesis is less than 0.05, we are willing
to reject H, (1 = 100) and conclude that the sample mean comes from a
population that has a mean that is less than 100 (u < 100). This crite-
rion probability value (p < 0.05) is called the “alpha” (or) level of the test.
The o level is the acceptable type I error rate for our hypothesis test.
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Table 2.2 The decision to accept or reject the null hypothesis may be i
: ays. An incorrect rejection, a type I error, is when we cla

e ot ’t, and an incorrect

that the means are different but in reality they aren

i im that the means are not
acceptance, a type Il error, is when we claim

different but in reality they are.
Reality
H, is true H, is false

accept Hy correct Type I error

Decision
reject Hy Type I error correct

Where there is a type I error, there must be a type {I error atlks;o (seﬁ
Table 2.2). A type II error occurs when we mcorrﬁctlyhaccept gee \;1(1)1T
esi test the hypothesis that the avera
hypothesis. Suppose that we : e

i ker) is 100 ms, but the a
for Cherokee (or at least this spea . o ot e
i le mean is 95 ms and the stan
mean VOT is 95 ms. If our samp : Stancare
iation i i ly going to conclude
tion is again about 35 ms we are sure :
?I?: lxilulll hypogxesis (H,: = 100) is probably true. At least our data is

not inconsistent with the hypothesis because 24% of the time (p = 0.24)
t-value that is equal to or less than —0.706.

we can get a

_ 95100 _ =5 __q706 testing for a small difference
" 361426 7.08

hypothesis we have made a type 1
rion o level for the acceptable type
I error rate, we can also require that our statistics avoid type II errcirs.
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Nonetheless, by accepting the nu.ll
error. Just as we can choose a crite
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have to be 18 ms before we co
: uld detect the diff
smaller difference like 5 ms we would have io 1; rense the pomer o
the hypothesis test.
" Youhll notice that in the calculation of # there are two parameters other
T}?n the sample mean and the population mean that affect the t-value
ese1 are the sta.ndard deviation of the sample (s) and the size of the.
sa;np e (n). To increase the power of the i-test we need to either
;i n:ll;ef the standard deviation or increase the number of observations
1mes you can reduce the standard deviation b i ‘
: controllin
u;contrqlled sources of variance. For example, in this}{/OT data Ii(s)gfgg
g‘fsfervatlons from both /t/ and /k/. These probably do have overall
1degent. average VOT, so by pooling them I have inflated the stand-
zr . §V1at10.n. If we had a sample of all /k/ VOTs the standard
Gev1at1c1>1n n;ight be lower and thus the power of the f-test greater
enerally, though, the best way to increase th ‘
: ' e power of your test i
to get more data. In this case, if we set the probability of a fype I err;i

crease the power of

altj 10.05, the probability of a type II error at 0.2, and we want to be
able to detect that 95 ms is different from the hypothesized 100 ms

then we need to hav .
magic). € an n of 324 observations (see the R note for the

CORRELATION

Of course, collecting more data is time consuming, so it is wise
to ask, as Ilse Lehiste once asked me, “sure it is significant, but is it
important?” It may be that a 5 ms difference is too small to be of
much practical or theoretical importance, so taking the trouble to col-
lect enough data so that we can detect such a small difference is really
just a waste of time.

2.4 Correlation

So far we have been concerned in this chapter with the statistical
background assumptions that make it possible to test hypotheses
about the population mean. This is the “tests” portion of this chapter
on “Patterns and tests.” You can be sure that we will be coming back
to this topic in several practical applications in chapters to follow.
However, because this chapter is aiming to establish some of the basic
building blocks that we will return to over and over in the subsequent
chapters, I would like to suspend the “tests” discussion at this point
and turn to the “patterns” portion of the chapter. The aim here is to
explain some of the key concepts that underlie studies of relationships
among variables — in particular to review the conceptual and math-
ematical underpinnings of correlation and regression.

One way to explore the relationship between two variables is by look-
ing at counts in a contingency table. For example, we have a data set
of two measurements of the lowest vocal tract resonance frequency —
the first formant (F1). We have F1 values for men and women for the
vowels /i/, /e/, /a/, /o/, and /u/ in four different languages (see
the data file “F1_data.txt”). Women tend to have shorter vocal tracts
than men and thus to have higher resonance frequencies. This is the
case in our data set, where the average F1 of the women is 534.6 Hz
and the average F1 for men is 440.9. We can construct a contingency
table by counting how many of the observations in this data set fall
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Table 2.3 A 2 x 2 conti
tingency table showi
3EOVG or below the average F1 for men anc;nV%othe m'lmber of EL values
1_data.txt” data set. men in the small

Female F1
below above

above
Male F1 .
below 12

above or

b examl;eileov‘\:v ’;h}e1 mean on .each of the two variables being compared

G meas,ured ave the fn{e vowels in Sele (a language spolfen in

e ) mmeasu on two variables — male F1 and female F1 — d o
In studying the relationship or correlation betweearrtlm;\lls

I guess it is i .
to cfme out 1t‘iulsm £2;ta§:) t(') kte ep in mind that Table 2.3 didn’t have
) - For istance, if F1 :
to vowel qu s was not acousticall
aCCOrdingq tzhzillic?}?n Pa1rlilg observations of male and femal}; :Zﬁteerd
_ vowel they were X s
resCultetc':l In matched patterns of %,1 Variatgr?ducmg would not have
ontin g ‘

of oms begtjile? ttables arg a useful way to see the relationship, o 1
’ 1 two variables, and we will see in Chapter 5 tf{ t ) }? <
at when
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the counts are a good deal larger than these — particularly when we
have more than 5 or 10 observations even in the smallest cell of the
table — we can test the strength of the relationship using the x* distri-
bution. However, we threw away a lot of information by constructing
this contingency table. From Table 2.3 all we know is that if the male
F1 is above average so is the female F1, but we don’t know whether
they tend to be the same amount above average or if sometimes the
amount above average for males is much more than it is for females.
It would be much better to explore the relationship of these two vari-
ables without throwing out this information.

In Figure 2.7 you can see the four cells of Table 2.3. There are 6 data
points in the upper right quadrant of the graph, 12 data points in the
lower left, and 1 that just barely ended up in the lower right quadrant.
These quadrants were marked in the graph by drawing a dashed line
at the mean values for the male (441 Hz) and female (535 Hz) talkers.
As you can see, the relationship between male and female F1 values
goes beyond simply being in one quadrant of the graph or not. In fact,

1 T T | H T T
400 500 600 700 800 900 1000
Female

Figure 2.7 Nineteen pairs of male and female F1 values drawn from four
different languages and 4 or 5 vowels in each language. The grid lines mark
the average female (vertical line) and male (horizontal line) F1 values. The
diagonal line is the best-fitting straight line (the linear regression) that

relates female F1 to male F1.




60
PATTERNS AND TESTS
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2.4.1 Covariance and correlation

The key insight in developing a measure of association between two
variables is to measure deviation from the mean (x; — X). As we saw
in Figure 2.7, the association of male F1 and female F1 can be captured
by noticing that when female F1 (let’s name this variable x) was higher
than the female mean, male F1 (y) was also higher than the male mean.
That is, if x; - & is positive then y; — 7 is also positive. What is more, the
association is strongest when the magnitudes of these deviations are
matched — when x; is quite a bit larger than the x mean and y; is also
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quite a bit larger than the ¥ mean. We can get an overall sense of how
strong the association of two variables is by multiplying the deviations
of x and y and summing these products for all of the observations.

2o =Dy~ sum of product of deviations

Notice that if x, is much larger than the mean and Y:1is also much larger
than the mean then the product will be greater than if Y; is only a
little larger than the mean. N otice also that if x, is quite a bit less than
the mean and v, is also quite a bit less than the mean the product will
again be a large positive value.

The product of the deviations will be larger as we have a larger and
larger data set, so we need to normalize this value to the size of the
data set by taking the average of the paired deviations. This average
product of the deviations is called the covariance of X and .

Z?:o(xi -y -9)

" covariance of X and Y

Of course, the size of a deviation from the mean can be standard-
ized so that we can compare deviations from different data sets on the

in units of standard deviation with the Z-score normalization. This is
commonly done when we measure association too,

n (X=X Yy, -7
Zz‘:O( Sy ]( Sy ] Z:io(zx)(zy)

= =Ty correlation of X and Y
n n Y

The main result here is that the correlation coefficient Ty is simply a

ance can have any value, and correlation ranges from 1 to —1 (perfect
positive correlation is 1 and perfect negative correlation is -1).
2.42  The regression line

Notice in Figure 2.7 that put a diagonal line through the data points
that shows generally the relationship between female and male F1. This
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n by hand, but was calculated to be the 11.)fes’c ﬂf:attlg}g]
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= 1
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prediCtiOn of y; is:

7 jcti ; x; when r,, # 1
;= rxyzl(xi —%)+7 predicting y; from xy

for a straight line

tion
is into the form of an equa intercept
NOX, +t%xp)uvaeﬂi<lest tlllmle slope of the line B =7,(s,/s,) and the infercep
(9= i
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2.43 Amount of variance accounted for

So now we have a method to measure the association between two
cont1.nuous variables giving us the Pearson’s product moment cor-
?ela’aon (), and a way to use that measure to determine the slope and
@tercept of the best-fitting line that relates x and y (assumin pthat
linear relationship is correct). i )
$o what I'd like to present in this section is a way to use the corre-
lation coefficient to measure the percent of variance in y that we can
correctly predict as a linear function of x. Then we will see how to put

all of this stuff together in R, which nat i
ol oy naturally has a function that does
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So, we have a statistic r,, that ranges from —1 to 1 that indicates the
degree of association between two variables. And we have a linear func-
tion §;, = A + Bx; that uses r,, to predict y from x. What we want now
is a measure of how much of the variability of y is accurately predicted
by this linear function. This will be the “amount of variance accounted
for” by our linear model.

Is it a model or just a line? What's in a name? If it seems reasonable
to think that x might cause y we can think of the linear function as a
model of the causal relationship and call it a “regression model.” If
a causal relationship doesn’t seem reasonable then we’ll speak of the
correlation of two variables.

As it turns out, you can simply square the correlation coefficient
to get the amount of variance in y that the line A + Bx accounts for.
I hope that it will add some insight to look at how we come to this
conclusion.

r? =1,y r-squared, the amount of variance accounted for
The variance of y is s;.. We are trying to measure how much of this
variance can be accounted for by the line §; = A + Bx;. The amount of
variance that is predicted by this “linear regression function” is s5. Which
means that the unpredicted variance is the variance of the deviation
between the actual y; values and the predicted values §;. Call this unpre-
dicted, or residual, variance s;_y. Because we used the optimal rule (the
least-squares criterion) to relate x and y, s and s, ; are not correlated
with each other, therefore

22, 2
S]/ = Sy + Sy_]?.

In words that is: The total variance of y is composed of the part that
can be predicted if we know x and the part that is independent of x.

Tf we consider this same relationship in terms of z-scores instead of
in terms of the raw data (s2 = 52, +52,,,) we can equivalently talk about
it in terms of proportion of variance because the variance s2 of the
normal distribution is equal to one. Then instead of dividing the total
amount of variance into a part that can be predicted by the line and a
part that remains unpredicted we can divide it into a proportion can
be predicted and a remainder.

In terms of z-scores the line equation j = A + Bx is £, = rz, and from
the definition of variance, then,
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2y

X0z 3@

" =" proportion of variance accounted for is 7*

I guess, in deciphering this it helps to know that 2,22 = 1 because the
standard deviation of z is 1.

The key point here is that 7? is equivilent to sz, the proportion of
total variance of y that can be predicted by the line.

 the linear model in
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EXERCISES

1 Given a skewed distribution (Figure 2.3) what distribution of the
mean do you expect for samples of size 7 = 1?

2 Tused the custom R function central . Limit() to draw Q-Q plots for
samples from this skewed distribution for samples of size n = 1
thr(?ugh n = 8. Here are the correlations between the normal distri-
bution and the distribution of the means for samples of these sizes:

n . 1 2 3 4 6 8
correlation 0.965 0.981 0.988 0.991 0.993 0.997

What do these values indicate about the distribution of the mean?
Where was the biggest change in the correlation? ‘

3 We test the hypothesis that the mean of our data set (x = 113.5
s =35.9, n = 18) is no different from 100, and find that the tis 1 59,
an.d the probability of finding a higher ¢ is 0.065. Show how to' e’;
this t-value and this probability from the t-distribution. What e(fio
you conclude from this -test?

4 Calculate the covariance and correlation of the following data set
by hand (well, use a calculator!). Plot the data and notice that the
relationshiP is such that as Y gets bigger X gets smaller. How do

our covariance an i is i
zfrend ovariance ¢ d correlation values reflect this “down going”

X Y
90 ~7
82 -05
47 8
18 32
12 22
51 17
46 13
2 31
48 11
72 4
18 29
13 32

5 Soyr‘ce‘() the following function and explore the y? distribution
It is 'salf‘l thf;lt the expression (n ~ 1)s*/ 62 is distributed in a family
of distributions (one slightly different distribution for each value
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of n) that is analogous to the t-distribution. Try this function out
with different values of n, and different population standard
deviations. Describe what this function does in a flow chart or a
paragraph — whatever makes most sense to you. What is the effect
of choosing samples of different size (1 =4, ..., 50)?

#The input parameters are:

# n - size of each sample

# m - number of samples of size n to select

# mu, sigma - the mean and sd the normal distribution from

which samples are drawn
chisg = function(n=15,m=5000,mu=0, sigma=1) {

sigsq=(sigma*sigmad
xlow =0
xhigh = 2%n

vars = vector() # I hereby declare that “vars” is a vector

for (1 in 1:m) { # get m samples
data= rnorm(n,mu,sigma) # sample the normal dist
vars[i] = var(data) # vars is our array of variances
}
title = paste(“Sample size = ",n, "df = ",n-1)
hist((n-1)*vars/sigsq,
xlim=(xlow,xhigh),main=title,freg=F)
plot(Function(x)dchisq(x,df=(n—1)),xlow,xhigh,qdd=T)

}

Is the population mean (1) of the 1971 Cherokee VOT data
(Chapter 1, Table 1.1) 100 ms? How sure are you?

You want to be able to detect a reaction time difference as small
as 20 ms between two conditions in a psycholinguistic experiment.
You want your t-test to have a criterion type I error rate of 0.05 and
you want the type II error rate to be 0.2. The standard deviation in
such experiments is typically about 60 ms, so how many observa-
tions do you have to make in order to detect a 20 ms difference?
Try this with the type of comparison being “paired” instead of “two.
sample” and with the standard deviation of the differences being
20 ms. Which method do you prefer — two independent samples,
or paired observations?




