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9.2. Generalized linear models

The Gaussian models of previous chapters worked by first assuming a Gaussian

distribution over outcomes. Then, we replaced the parameter that defines the mean of

that distribution, µ, with a linear model. This resulted in likelihood definitions of the sort:

For an outcome variable that is continuous and far from any theoretical maximum or

minimum, this sort of Gaussian model has maximum entropy.

But when the outcome variable is either discrete or bounded, a Gaussian likelihood is not

the most powerful choice. Consider for example a count outcome, such as the number of

blue marbles pulled from a bag. Such a variable is constrained to be zero or a positive

integer. Using a Gaussian model with such a variable won't result in a terrifying

explosion. But it can't be trusted to do much more than estimate the average count. It

certainly can't be trusted to produce sensible predictions, because while you and I know

that counts can't be negative, a linear regression model does not. So it would happily

predict negative values, whenever the mean count is close to zero.
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Figure 9.5. Why we need link functions. The solid blue line is a linear model
of a probability mass. It increases linearly with a predictor, x, on the

horizontal axis. But when it reaches the maximum probability mass of 1, at
the dashed boundary, it will happily continue upwards, as shown by the

dashed blue line. In reality, further increases in x could not further increase
probability, as indicated by the horizontal continuation of the solid trend.

Luckily, it's easy to do better. By using all of our prior knowledge about the outcome

variable, usually in the form of constraints on the possible values it can take, we can

appeal to maximum entropy for the choice of distribution. Then all we have to do is

generalize the linear regression strategy—replace a parameter describing the shape of

the likelihood with a linear model—to probability distributions other than the Gaussian.
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This is the essence of a GENERALIZEDGENERALIZED  LINEARLINEAR  MODELMODEL.  And it results in models that

look like this:

There are only two changes here from the familiar Gaussian model. The first is

principled—the principle of maximum entropy. The second is an epicycle—a modeling

trick that works descriptively but not causally—but a quite successful one. I'll briefly

explain each, before moving on in the remainder of the section to describe all of the most

common distributions used to construct generalized linear models. Later chapters show

you how to implement them.

First, the likelihood is binomial instead of Gaussian. For a count outcome y for which

each observation arises from n trials and with constant expected value np, the binomial

distribution has maximum entropy. So it's the least informative distribution that satisfies

our prior knowledge of the outcomes y. If the outcome variable had different constraints,

it could be a different maximum entropy distribution.

Second, there is now a funny little f at the start of the second line of the model. This

represents a LINKLINK  FUNCTIONFUNCTION, to be determined separately from the choice of

distribution. Generalized linear models need a link function, because rarely is there a

“µ“, a parameter describing the average outcome, and rarely are parameters unbounded

in both directions, like µ is. For example, the shape of the binomial distribution is

determined, like the Gaussian, by two parameters. But unlike the Gaussian, neither of

these parameters is the mean. Instead, the mean outcome is np, which is a function of

both parameters. Since n is usually known (but not always), it is most common to attach a

linear model to the unknown part, p. But p is a probability mass, so p  must lie between

zero and one. But there's nothing to stop the linear model α + βx  from falling below zero

or exceeding one. FFIGUREIGURE 9.5 9.5 plots an example.
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The link function f provides a solution to this common problem. This chapter will

introduce the two most common link functions. Then you'll see how to use them in the

chapters that follow.

Rethinking: The scourge of Histomancy.Rethinking: The scourge of Histomancy. One strategy for choosing an outcome

distribution is to plot the histogram of the outcome variable and, by gazing into its soul,

decide what sort of distribution function to use. Call this strategy HHISTOMANCYISTOMANCY, the

ancient art of divining likelihood functions from empirical histograms. This sorcery is

used, for example, when testing for normality before deciding whether or not to use a

non-parametric procedure. Histomancy is a false god, because even perfectly good

Gaussian variables may not look Gaussian when displayed as a histogram. Why?

Because at most what a Gaussian likelihood assumes is not that the aggregated data look

Gaussian, but rather that the residuals, after fitting the model, look Gaussian. So for

example the combined histogram of male and female body weights is certainly not

Gaussian. But it is (approximately) a mixture of Gaussian distributions, so after

conditioning on sex, the residuals may be quite normal. Other times, people decide not

to use a Poisson model, because the variance of the aggregate outcome exceeds its mean

(see Chapter 10Chapter 10). But again, at most what a Poisson likelihood assumes is that the

variance equals the mean after conditioning on predictors. It may very well be that a

Gaussian or Poisson likelihood is a poor assumption in any particular context. But this

can't easily be decided via Histomancy. This is why we need principles, whether

maximum entropy or otherwise.

9.2.1. Meet the family.

The most common distributions used in statistical modeling are members of a family

known as the EXPONENTIALEXPONENTIAL  FAMILYFAMILY. Every member of this family is a maximum

entropy distribution, for some set of constraints. And conveniently, just about every other

statistical modeling tradition employs the exact same distributions, even though they

arrive at them via justifications other than maximum entropy.
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FFIGUREIGURE 9.6 9.6 illustrates the representative shapes of the most common exponential family

distributions used in GLMs. The horizontal axis in each plot represents values of a

variable, and the vertical axis represents probability density (for the continuous

distributions) or probability mass (for the discrete distributions). For each distribution,

the figure also provides the notation (above each density plot) and the name of R's

corresponding built-in distribution function (below each density plot). The gray arrows

in FFIGUREIGURE 9.6 9.6 indicate some of the ways that these distributions are dynamically related

to one another. These relationships arise from generative processes that can convert one

distribution to another. You do not need to know these relationships in order to

successfully use these distributions in your modeling. But the generative relationships do

help to demystify these distributions, by tying them to causation and measurement.

Two of these distributions, the Gaussian and binomial, are already familiar to you.

Together, they comprise the most commonly used outcome distributions in applied

statistics, through the procedures of linear regression (Chapter 4Chapter 4) and logistic regression

(Chapter 10Chapter 10). There are also three new distributions that deserve some commentary.

The EXPONENTIALEXPONENTIAL  DISTRIBUTIONDISTRIBUTION (center) is constrained to be zero or positive. It is a

fundamental distribution of distance and duration, kinds of measurements that

represent displacement from some point of reference, either in time or space. If the

probability of an event is constant in time or across space, then the distribution of events

tends towards exponential. The exponential distribution has maximum entropy among

all non-negative continuous distributions with the same average displacement. Its shape

is described by a single parameter, the rate of events λ, or the average displacement λ .

This distribution is the core of survival and event history analysis, which is not covered

in this book.
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Figure 9.6. Some of the exponential family distributions, their notation, and
some of their relationships. Center: exponential distribution. Clockwise,

from top-left: gamma, normal (Gaussian), binomial and Poisson
distributions.

The GAMMAGAMMA  DISTRIBUTIONDISTRIBUTION (top-left) is also constrained to be zero or positive. It too is a

fundamental distribution of distance and duration. But unlike the exponential

distribution, the gamma distribution can have a peak above zero. If an event can only

happen after two or more exponentially distributed events happen, the resulting waiting

times will be gamma distributed. For example, age of cancer onset is approximately

gamma distributed, since multiple events are necessary for onset.  The gamma

distribution has maximum entropy among all distributions with the same mean and

same average logarithm. Its shape is described by two parameters, but there are at least
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three different common descriptions of these parameters, so some care is required when

working with it. The gamma distribution is common in survival and event history

analysis, as well as some contexts in which a continuous measurement is constrained to

be positive.

The PPOISSONOISSON  DISTRIBUTIONDISTRIBUTION (bottom-left) is a count distribution like the binomial. It is

actually a special case of the binomial, mathematically. If the number of trials n is very

large (and usually unknown) and the probability of a success p is very small, then a

binomial distribution converges to a Poisson distribution with an expected rate of events

per unit time of λ = np. Practically, the Poisson distribution is used for counts that never

get close to any theoretical maximum. As a special case of the binomial, it has maximum

entropy under
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exactly the same constraints. Its shape is described by a single parameter, the rate of

events λ. Poisson GLMs are detailed in the next chapter.

There are many other exponential family distributions, and many of them are useful. But

don't worry that you need to memorize them all. You can pick up new distributions, and

the sorts of generative processes they correspond to, as needed. It's also not important

that an outcome distribution be a member of the exponential family—if you think you

have good reasons to use some other distribution, then use it. But you should also check

its performance, just like you would any modeling assumption.

Rethinking: A likelihood is a prior.Rethinking: A likelihood is a prior. In traditional statistics, likelihood functions are

“objective” and prior distributions “subjective.” However, likelihoods are themselves

prior probability distributions: They are priors for the data, conditional on the

parameters. And just like with other priors, there is no correct likelihood. But there are

better and worse likelihoods, depending upon the context. Useful inference does not

require that the data (or residuals) be actually distributed according to the likelihood

anymore than it requires the posterior distribution to be like the prior.

9.2.2. Linking linear models to distributions.

To build a regression model from any of the exponential family distributions is just a

matter of attaching one or more linear models to one or more of the parameters that

describe the distribution's shape. But as hinted at earlier, usually we require a LINKLINK

FUNCTIONFUNCTION to prevent mathematical accidents like negative distances or probability

masses that exceed 1. So for any outcome distribution, say for example the exotic

“Zaphod” distribution,  we write:

where f is a link function.

But what function should f be? A link function's job is to map the linear space of a model
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like α + βx  onto the non-linear space of a parameter like θ. So f is chosen with that goal in

mind. Most of the time, for most GLMs, you can use one of two exceedingly common

links, a logit link or a log link. Let's introduce each, and you'll work with both in later

chapters.

The LOGITLOGIT  LINKLINK maps a parameter that is defined as a probability mass, and therefore

constrained to lie between zero and one, onto a linear model that can take on any real

value. This link is extremely common when working with binomial GLMs. In the context

of a model definition, it looks like this:

And the logit function itself is defined as the log-odds:

The “odds” of an event are just the probability it happens divided by the probability it

does not happen. So really all that is being stated here is:

i
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Figure 9.7. The logit link transforms a linear model (left) into a probability
(right). This transformation compresses the geometry far from zero, such

that a unit change on the linear scale (left) means less and less change on
the probability scale (right).

So to figure out the definition of p  implied here, just do a little algebra and solve the

above equation for p :

The above function is usually called the LOGISTICLOGISTIC. In this context, it is also commonly

called the INVERSE-LOGITINVERSE-LOGIT, because it inverts the logit transform.

What all of this means is that when you use a logit link for a parameter, you are defining

the parameter's value to be the logistic transform of the linear model. FFIGUREIGURE 9.7 9.7

illustrates the transformation that takes place when using a logit link. On the left, the

geometry of the linear model is shown, with horizontal lines indicating unit changes in

the value of the linear model as the value of a predictor x changes. This is the log-odds

space, which extends continuously in both positive and negative directions. On the right,

the linear space is transformed and is now constrained entirely between zero and one.

The horizontal lines have been compressed near the boundaries, in order to make the

linear space fit within the probability space. This compression produces the
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characteristic logistic shape of the transformed linear model shown in the right-hand

plot.

This compression does affect interpretation of parameter estimates, because no longer

does a unit change in a predictor variable produce a constant change in the mean of the

outcome variable. Instead, a unit change in x  may produce a larger or smaller change in

the probability p , depending upon how far from zero the log-odds are. For example, in

FFIGUREIGURE 9.7 9.7, when x = 0 the linear model has a value of zero on the log-odds scale. A half-

unit increase in x results in about a 0.25 increase in probability. But each addition half-

unit will produce less and less of an increase in probability, until any increase is

vanishingly small. And if you think about it, a good model of probability needs to behave

this way. When an
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event is almost guaranteed to happen, its probability cannot increase very much, no

matter how important the predictor may be.

Figure 9.8. The log link transforms a linear model (left) into a strictly positive
measurement (right). This transform results in an exponential scaling of the

linear model, with a unit change on the linear scale mapping onto
increasingly larger changes on the outcome scale.

You'll find examples of this compression phenomenon in later chapters. The key lesson

for now is just that no regression coefficient, such as β, from a GLM ever produces a

constant change on the outcome scale. Recall that we defined interaction (Chapter 7Chapter 7) as

a situation in which the effect of a predictor depends upon the value of another

predictor. Well now every predictor essentially interacts with itself, because the impact

of a change in a predictor depends upon the value of the predictor before the change.

More generally, every predictor variable effectively interacts with every other predictor

variable, whether you explicitly model them as interactions or not. This fact makes the

visualization of counter-factual predictions even more important for understanding what

the model is telling you.

The second very common link function is the LOGLOG  LINKLINK. This link function maps a

parameter that is defined over only positive real values onto a linear model. For

example, suppose we want to model the standard deviation σ of a Gaussian distribution

so it is a function of a predictor variable x. The parameter σ must be positive, because a
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standard deviation cannot be negative nor can it be zero. The model might look like:

In this model, the mean µ is constant, but the standard deviation scales with the value x .

A log link is both conventional and useful in this situation. It prevents σ from taking on a

negative value.

What the log link effectively assumes is that the parameter's value is the exponentiation

of the linear model. Solving log(σ ) = α + βx  for σ  yields the inverse link:

i
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The impact of this assumption can be seen in FFIGUREIGURE 9.8 9.8. Using a log link for a linear

model (left) implies an exponential scaling of the outcome with the predictor variable

(right). Another way to think of this relationship is to remember that logarithms are

magnitudes. An increase of one unit on the log scale means an increase of an order of

magnitude on the un-transformed scale. And this fact is reflected in the widening

intervals between the horizontal lines in the right-hand plot of FFIGUREIGURE 9.8 9.8.

While using a log link does solve the problem of constraining the parameter to be

positive, it may also create a problem when the model is asked to predict well outside the

range of data used to fit it. Exponential relationships grow, well, exponentially. Just like a

linear model cannot be linear forever, an exponential model cannot be exponential

forever. Human height cannot be linearly related to weight forever, because very heavy

people stop getting taller and start getting wider. Likewise, the property damage caused

by a hurricane may be approximately exponentially related to wind speed for smaller

storms. But for very big storms, damage may be capped by the fact that everything gets

destroyed.

Rethinking: When in doubt, play with assumptions.Rethinking: When in doubt, play with assumptions. Link functions do amount to

assumptions. And like all assumptions, they are useful in different contexts. The

conventional logit and log links are widely useful, but they can sometimes distort

inference. If you ever have doubts, and want to reassure yourself that your conclusions

are not sensitive to choice of link function, then do what you'd do for any other modeling

assumption: SENSITIVITYSENSITIVITY  ANALYSISANALYSIS. A sensitivity analysis explores how changes in

assumptions influence inference. If none of the alternative assumptions you consider

have much impact on inference, that's worth reporting. Likewise, if the alternatives you

consider do have an important impact on inference, that's also worth reporting. The

same sort of advice follows for other modeling assumptions: likelihoods, linear models,

priors, and even how the model is fit to data. As with many machines, exploring how a

model behaves under extreme conditions helps us understand how it behaves under

ordinary conditions.

Some people are nervous about sensitivity analysis, because it feels like fishing for
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results, or “p-hacking.”  The goal of sensitivity analysis is really the opposite of p-

hacking. In p-hacking, many justifiable analyses are tried, and the one that attains

statistical significance is reported. In sensitivity analysis, many justifiable analyses are

tried, and all of them are described.

Overthinking: Parameters interacting with themselves.Overthinking: Parameters interacting with themselves. We can find some further

clarity on the claim that GLMs force every predictor variable to interact with itself by

mathematically computing the rate of change in the outcome for a given change in the

value of the predictor. First, recall that in a classic Gaussian model the mean is modeled

like:

So the rate of change in µ with respect to x is just ∂µ/∂x = β. And that's constant. It doesn't

matter what value x has. But now consider the rate of change in a binomial probability p

with respect to a predictor x:

And now taking the derivative with respect to x yields:

Since x appears in this answer, the impact of a change in x depends upon x. That's an

interaction with itself.
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9.2.3. Absolute and relative differences.

There is an important practical consequence of the way that a link function compresses

and expands different portions of the linear model's range: Parameter estimates do not

by themselves tell you the importance of a predictor on the outcome. The reason is that

each parameter represents a relative difference on the scale of the linear model, ignoring

other parameters, while we are really interested in absolute differences in outcomes that

must incorporate all parameters.

This point will come up again in the context of data examples in later chapters, when it

will be easier to illustrate its importance. For now, just keep in mind that a big beta-

coefficient may not correspond to a big effect on the outcome.

9.2.4. GLMs and information criteria.

What you learned in Chapter 6Chapter 6 about information criteria and regularizing priors

applies also to GLMs. But with all these new outcome distributions at your command, it is

tempting to use information criteria to compare models with different likelihood

functions. Is a Gaussian or binomial better? Can't we just let WAIC sort it out?

Unfortunately, WAIC (or any other information criterion) cannot sort it out. The problem

is that deviance is part normalizing constant. The constant affects the absolute

magnitude of the deviance, but it doesn't affect fit to data. Since information criteria are

all based on deviance, their magnitude also depends upon these constants. That is fine, as

long as all of the models you compare use the same outcome distribution type—Gaussian,

binomial, exponential, gamma, Poisson, or another. In that case, the constants subtract

out when you compare models by their differences. But if two models have different

outcome distributions, the constants don't subtract out, and you can be misled by a

difference in AIC/DIC/WAIC.

Really all you have to remember is to only compare models that all use the same type of

likelihood. Of course it is possible to compare models that use different likelihoods, just
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not with information criteria. Luckily, the principle of maximum entropy ordinarily

motivates an easy choice of likelihood, at least for ordinary regression models. So there is

no need to lean on information criteria for this modeling choice.

There are a few nuances with WAIC and individual GLM types. These nuances will arise

as examples of each GLM are worked, in later chapters.

9.3. Maximum entropy priors

The principle of maximum entropy helps us to make modeling choices. When pressed to

choose an outcome distribution—a likelihood—maximum entropy nominates the least

informative distribution consistent with the constraints on the outcome variable.

Applying the principle in this way leads to many of the same distributional choices that

are commonly regarded as just convenient assumptions or useful conventions.

Another way that the principle of maximum entropy helps with choosing distributions

arises when choosing priors. GLMs are easy to use with conventional weakly informative

priors of the sort you've been using up to this point in the book. Such priors are nice,

because they allow the data to dominate inference while also taming some of the

pathologies of unconstrained estimation. There were some striking examples of their

“soft power” in Chapter 8Chapter 8.

But sometimes, rarely, some of the parameters in a GLM refer to things we might actually

have background information about. When that's true, maximum entropy provides a

way to generate a prior that embodies the background information, while assuming as

little else as possible. This makes them appealing, conservative choices.
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We won't be using maximum entropy to choose priors in this book, but when you come

across an analysis that does, you can interpret the principle in the same way as you do

with likelihoods and understand the approach as an attempt to include relevant

background information about parameters, while introducing no other assumptions by

accident.

9.4. Summary

This chapter has been a conceptual, not practical, introduction to maximum entropy and

generalized linear models. The principle of maximum entropy provides an empirically

successful way to choose likelihood functions. Information entropy is essentially a

measure of the number of ways a distribution can arise, according to stated assumptions.

By choosing the distribution with the biggest information entropy, we thereby choose a

distribution that obeys the constraints on outcome variables, without importing

additional assumptions. Generalized linear models arise naturally from this approach, as

extensions of the linear models in previous chapters. The necessity of choosing a link

function to bind the linear model to the generalized outcome introduces new

complexities in model specification, estimation, and interpretation. You'll become

comfortable with these complexities through examples in later chapters.
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